Spaces:
Build error
Build error
Developed working app
Browse files- .gitignore +2 -1
- README.md +18 -1
- app.py +35 -11
.gitignore
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
secrets.toml
|
2 |
venv/
|
3 |
data/
|
4 |
-
.DS_Store
|
|
|
|
1 |
secrets.toml
|
2 |
venv/
|
3 |
data/
|
4 |
+
.DS_Store
|
5 |
+
config.json
|
README.md
CHANGED
@@ -1 +1,18 @@
|
|
1 |
-
# custom-chatbot-streamlit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# custom-chatbot-streamlit
|
2 |
+
|
3 |
+
This application demonstrates how to setup a simple ChatBot with Azure OpenAI and StreamLit.
|
4 |
+
The ChatBot enables you to talk with your own data - in this case, to learn about André's research.
|
5 |
+
|
6 |
+
## Getting Started
|
7 |
+
|
8 |
+
1.Setup virtual environment and install dependencies:
|
9 |
+
```
|
10 |
+
python -m venv venv/
|
11 |
+
source venv/bin/activate
|
12 |
+
pip install -r requirements.txt
|
13 |
+
```
|
14 |
+
|
15 |
+
2. Download test data
|
16 |
+
|
17 |
+
##
|
18 |
+
|
app.py
CHANGED
@@ -1,27 +1,51 @@
|
|
1 |
import streamlit as st
|
2 |
-
from llama_index import VectorStoreIndex, ServiceContext
|
3 |
-
from llama_index.llms import
|
4 |
-
import
|
|
|
|
|
5 |
from llama_index import SimpleDirectoryReader
|
6 |
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
if "messages" not in st.session_state.keys(): # Initialize the chat message history
|
13 |
st.session_state.messages = [
|
14 |
-
{"role": "assistant", "content": "Ask me a question about
|
15 |
]
|
16 |
|
17 |
|
18 |
@st.cache_resource(show_spinner=False)
|
19 |
def load_data():
|
20 |
with st.spinner(text="Loading and indexing the Streamlit docs – hang tight! This should take 1-2 minutes."):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
return index
|
26 |
|
27 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from llama_index import VectorStoreIndex, ServiceContext, set_global_service_context
|
3 |
+
from llama_index.llms import AzureOpenAI
|
4 |
+
from llama_index.embeddings import OpenAIEmbedding
|
5 |
+
import json
|
6 |
+
import os
|
7 |
from llama_index import SimpleDirectoryReader
|
8 |
|
9 |
|
10 |
+
# Load config values
|
11 |
+
with open(r'config.json') as config_file:
|
12 |
+
config_details = json.load(config_file)
|
13 |
+
|
14 |
+
# Initialize message history
|
15 |
+
st.header("Chat with André's research 💬 📚")
|
16 |
|
17 |
if "messages" not in st.session_state.keys(): # Initialize the chat message history
|
18 |
st.session_state.messages = [
|
19 |
+
{"role": "assistant", "content": "Ask me a question about André's research!"}
|
20 |
]
|
21 |
|
22 |
|
23 |
@st.cache_resource(show_spinner=False)
|
24 |
def load_data():
|
25 |
with st.spinner(text="Loading and indexing the Streamlit docs – hang tight! This should take 1-2 minutes."):
|
26 |
+
documents = SimpleDirectoryReader(input_dir="./data", recursive=True).load_data()
|
27 |
+
llm = AzureOpenAI(
|
28 |
+
model="gpt-3.5-turbo",
|
29 |
+
engine="chatbot-streamlit",
|
30 |
+
temperature=0.5,
|
31 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
32 |
+
api_base=config_details['OPENAI_API_BASE'],
|
33 |
+
api_type="azure",
|
34 |
+
api_version=config_details['OPENAI_API_VERSION'],
|
35 |
+
system_prompt="You are an expert on the Streamlit Python library and your job is to answer technical questions. Assume that all questions are related to the Streamlit Python library. Keep your answers technical and based on facts – do not hallucinate features."
|
36 |
+
)
|
37 |
+
# You need to deploy your own embedding model as well as your own chat completion model
|
38 |
+
embed_model = OpenAIEmbedding(
|
39 |
+
model="text-embedding-ada-002",
|
40 |
+
deployment_name="chatbot-streamlit-embedding",
|
41 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
42 |
+
api_base=config_details['OPENAI_API_BASE'],
|
43 |
+
api_type="azure",
|
44 |
+
api_version=config_details['OPENAI_API_VERSION'],
|
45 |
+
)
|
46 |
+
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
|
47 |
+
set_global_service_context(service_context)
|
48 |
+
index = VectorStoreIndex.from_documents(documents) #, service_context=service_context)
|
49 |
return index
|
50 |
|
51 |
|