Andrei Boiarov
v1 version of app
14bb247
from transformers import ViTMAEForPreTraining, ViTImageProcessor
import numpy as np
import torch
import gradio as gr
image_processor = ViTImageProcessor.from_pretrained('andrewbo29/vit-mae-base-formula1')
model = ViTMAEForPreTraining.from_pretrained('andrewbo29/vit-mae-base-formula1')
imagenet_mean = np.array(image_processor.image_mean)
imagenet_std = np.array(image_processor.image_std)
def prep_image(image):
return torch.clip((image * imagenet_std + imagenet_mean) * 255, 0, 255).int().cpu().numpy()
def reconstruct(image):
pixel_values = image_processor.preprocess(image, return_tensors='pt').pixel_values
outputs = model(pixel_values)
y = model.unpatchify(outputs.logits)
y = torch.einsum('nchw->nhwc', y).detach().cpu()
# visualize the mask
mask = outputs.mask.detach()
mask = mask.unsqueeze(-1).repeat(1, 1, model.config.patch_size ** 2 * 3) # (N, H*W, p*p*3)
mask = model.unpatchify(mask) # 1 is removing, 0 is keeping
mask = torch.einsum('nchw->nhwc', mask).detach().cpu()
x = torch.einsum('nchw->nhwc', pixel_values).detach().cpu()
# masked image
im_masked = x * (1 - mask)
# MAE reconstruction pasted with visible patches
im_paste = x * (1 - mask) + y * mask
out_orig = prep_image(x[0])
out_masked = prep_image(im_masked[0])
out_rec = prep_image(y[0])
out_rec_vis = prep_image(im_paste[0])
return [(out_orig, 'original'),
(out_masked, 'masked'),
(out_rec, 'reconstruction'),
(out_rec_vis, 'reconstruction + visible')]
with gr.Blocks() as demo:
with gr.Column(variant='panel'):
with gr.Column():
img = gr.Image(
container=False,
type='pil'
)
btn = gr.Button(
'Apply F1 MAE',
scale=0
)
gallery = gr.Gallery(
columns=4,
rows=1,
height='300px',
object_fit='none'
)
btn.click(reconstruct, img, gallery)
if __name__ == "__main__":
demo.launch()