Spaces:
Sleeping
Sleeping
File size: 9,081 Bytes
e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 2805894 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
"""Wrapper for big_vision contrastive models.
Before using any of the functions, make sure to call `setup()`.
Choose one of the configs in `MODEL_CONFIGS` and then call `load_model()` to get
the params and model wrapper.
"""
import dataclasses
import enum
import functools
import importlib
import os
import subprocess
import sys
import tempfile
import flax.linen as nn
import jax
import jax.numpy as jnp
import ml_collections
import numpy as np
import PIL.Image
import sentencepiece
from tensorflow.io import gfile
import transformers
def _clone_git(url, destination_folder, commit_hash=None):
subprocess.run(
['git', 'clone', '--depth=1', url, destination_folder], check=True
)
if commit_hash:
subprocess.run(
['git', '-C', destination_folder, 'checkout', commit_hash], check=True
)
def setup(commit_hash=None):
"""Checks out required non-pypi code from Github."""
for url, dst_name in (
('https://github.com/google-research/big_vision', 'big_vision_repo'),
('https://github.com/google/flaxformer', 'flaxformer_repo'),
):
dst_path = os.path.join(tempfile.gettempdir(), dst_name)
if not os.path.exists(dst_path):
_clone_git(url, dst_path, commit_hash)
if dst_path not in sys.path:
sys.path.insert(0, dst_path)
class ContrastiveModelFamily(enum.Enum):
"""Defines a contrastive model family."""
LIT = 'lit'
SIGLIP = 'siglip'
@property
def paper(self):
return {
self.LIT: 'https://arxiv.org/abs/2111.07991',
self.SIGLIP: 'https://arxiv.org/abs/2303.15343',
}[self]
def __lt__(self, other):
return self.value < other.value
@dataclasses.dataclass(frozen=True, kw_only=True, order=True)
class ContrastiveModelConfig:
"""Desribes a `big_vision` contrastive model."""
family: ContrastiveModelFamily
variant: str
res: int
textvariant: str
embdim: int
seqlen: int
tokenizer: str
vocab_size: int
ckpt: str
@dataclasses.dataclass(frozen=True, kw_only=True)
class ContrastiveModel:
"""Wraps a `big_vision` contrastive model."""
config: ContrastiveModelConfig
flax_module: nn.Module
tokenizer_sp: sentencepiece.SentencePieceProcessor | None
tokenizer_bert: transformers.BertTokenizer | None
def embed_images(self, params, images):
assert getattr(images, 'ndim') == 4, 'Must call `.preprocess_images()`'
zimg, _, out = self.flax_module.apply(dict(params=params), images, None)
return zimg, out
def embed_texts(self, params, texts):
assert getattr(texts, 'ndim') == 2, 'Must call `.preprocess_texts()`'
_, ztxt, out = self.flax_module.apply(dict(params=params), None, texts)
return ztxt, out
def preprocess_texts(self, texts):
"""Converts texts to padded tokens."""
def tokenize_pad(text, seqlen=self.config.seqlen):
if self.config.family == ContrastiveModelFamily.LIT:
tokens = self.tokenizer_bert.encode(text, add_special_tokens=True)
tokens = tokens[:-1] # removes [SEP]
tokens = tokens[:seqlen]
return tokens + [0] * (seqlen - len(tokens))
if self.config.family == ContrastiveModelFamily.SIGLIP:
tokens = self.tokenizer_sp.tokenize(text, add_eos=True)
if len(tokens) >= seqlen:
eos_id = self.tokenizer_sp.eos_id()
return tokens[:seqlen - 1] + [eos_id] # "sticky" eos
return tokens + [0] * (seqlen - len(tokens))
return np.array([tokenize_pad(text) for text in texts])
def preprocess_images(self, images):
if not isinstance(images, (list, tuple)):
images = [images]
def topil(image):
if not isinstance(image, PIL.Image.Image):
image = PIL.Image.fromarray(image)
return image
return np.array([
topil(image).resize([self.config.res, self.config.res])
for image in images
]) / 127.5 - 1.0
def get_bias(self, out):
assert (
self.config.family == ContrastiveModelFamily.SIGLIP
), self.config.family
return out['b'].item()
def get_temperature(self, out):
return out['t'].item()
def get_probabilities(self, zimg, ztxt, temperature, *, axis=None, bias=None):
# Note: zimg, ztxt are already normalized.
if self.config.family == ContrastiveModelFamily.LIT:
assert bias is None
assert axis in (-1, -2), 'Must specify axis: -1/-2=normalize texts/images'
return jax.nn.softmax(zimg @ ztxt.T * temperature, axis=axis)
if self.config.family == ContrastiveModelFamily.SIGLIP:
assert axis is None
assert bias is not None, 'Must specify bias.'
return jax.nn.sigmoid(zimg @ ztxt.T * temperature + bias)
def _make_config(
family, variant, res, textvariant, ckpt, embdim, seqlen, vocab_size
):
if family == 'lit':
tokenizer = ckpt.replace('.npz', '.txt')
else:
tokenizer = 'c4_en'
return ContrastiveModelConfig(
family=ContrastiveModelFamily(family), variant=variant, res=res,
textvariant=textvariant, embdim=embdim, seqlen=seqlen,
tokenizer=tokenizer, vocab_size=vocab_size,
ckpt=ckpt,
)
# pylint: disable=line-too-long
MODEL_CONFIGS = dict(
lit_b16b=_make_config('lit', 'B/16', 224, 'B', 'gs://vit_models/lit/LiT-B16B.npz', 768, 16, 32_000),
lit_l16l=_make_config('lit', 'L/16', 224, 'L', 'gs://vit_models/lit/LiT-L16L.npz', 1024, 16, 32_000),
lit_b16s=_make_config('lit', 'L/16', 224, 'S', 'gs://vit_models/lit/LiT-L16S.npz', 1024, 16, 32_000),
lit_b16ti=_make_config('lit', 'L/16', 224, 'Ti', 'gs://vit_models/lit/LiT-L16Ti.npz', 1024, 16, 32_000),
siglip_b16b_224=_make_config('siglip', 'B/16', 224, 'B', 'gs://big_vision/siglip/webli_en_b16_224_63724782.npz', 768, 64, 32_000),
siglip_b16b_256=_make_config('siglip', 'B/16', 256, 'B', 'gs://big_vision/siglip/webli_en_b16_256_60500360.npz', 768, 64, 32_000),
siglip_b16b_384=_make_config('siglip', 'B/16', 384, 'B', 'gs://big_vision/siglip/webli_en_b16_384_68578854.npz', 768, 64, 32_000),
siglip_b16b_512=_make_config('siglip', 'B/16', 512, 'B', 'gs://big_vision/siglip/webli_en_b16_512_68580893.npz', 768, 64, 32_000),
siglip_l16l_256=_make_config('siglip', 'L/16', 256, 'L', 'gs://big_vision/siglip/webli_en_l16_256_60552751.npz', 1024, 64, 32_000),
siglip_l16l_384=_make_config('siglip', 'L/16', 384, 'L', 'gs://big_vision/siglip/webli_en_l16_384_63634585.npz', 1024, 64, 32_000),
siglip_so400m14so440m_224=_make_config('siglip', 'So400m/14', 224, 'So400m', 'gs://big_vision/siglip/webli_en_so400m_224_57633886.npz', 1152, 16, 32_000),
siglip_so400m14so400m_384=_make_config('siglip', 'So400m/14', 384, 'So400m', 'gs://big_vision/siglip/webli_en_so400m_384_58765454.npz', 1152, 64, 32_000),
)
# pylint: enable=line-too-long
@functools.cache
def load_tokenizer_sp(name_or_path):
tok = sentencepiece.SentencePieceProcessor()
path = {
'c4_en': 'gs://t5-data/vocabs/cc_en.32000/sentencepiece.model',
}.get(name_or_path, name_or_path)
tok.LoadFromSerializedProto(gfile.GFile(path, 'rb').read())
return tok
@functools.cache
def load_tokenizer_bert(path):
if path.startswith('gs://'):
dst = tempfile.mktemp()
gfile.copy(path, dst)
path = dst
return transformers.BertTokenizer(path, do_lower_case=True)
def load_model(config, check_params=False):
"""Loads `big_vision` model."""
assert isinstance(config, ContrastiveModelConfig), type(config)
cfg = ml_collections.ConfigDict()
cfg.image_model = 'vit'
if config.family == ContrastiveModelFamily.LIT:
cfg.text_model = 'proj.flaxformer.bert'
cfg.image = dict(
variant=config.variant, pool_type='tok', head_zeroinit=False
)
bert_config = {'B': 'base', 'L': 'large'}[config.textvariant]
cfg.text = dict(config=bert_config, head_zeroinit=False)
tokenizer_bert = load_tokenizer_bert(config.tokenizer)
tokenizer_sp = None
if config.variant == 'L/16':
cfg.out_dim = (None, config.embdim) # (image_out_dim, text_out_dim)
else:
# (image_out_dim, text_out_dim)
cfg.out_dim = (config.embdim, config.embdim)
else:
cfg.image = dict(variant=config.variant, pool_type='map')
# TODO(lbeyer): remove later, default
cfg.text_model = 'proj.image_text.text_transformer'
cfg.text = dict(variant=config.textvariant, vocab_size=config.vocab_size)
cfg.bias_init = -10.0
tokenizer_sp = load_tokenizer_sp(config.tokenizer)
tokenizer_bert = None
cfg.out_dim = (None, config.embdim) # (image_out_dim, text_out_dim)
cfg.temperature_init = 10.0
model_mod = importlib.import_module(
'big_vision.models.proj.image_text.two_towers')
model = model_mod.Model(**cfg)
init_params = None # Faster but bypasses loading sanity-checks.
if check_params:
imgs = jnp.zeros([1, config.res, config.res, 3])
txts = jnp.zeros([1, config.seqlen], jnp.int32)
init_params = model.init(jax.random.PRNGKey(0), imgs, txts)['params']
params_cpu = model_mod.load(init_params, config.ckpt, cfg)
return params_cpu, ContrastiveModel(
config=config,
flax_module=model,
tokenizer_sp=tokenizer_sp,
tokenizer_bert=tokenizer_bert,
)
|