File size: 9,081 Bytes
e380bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cfc2e7
 
 
 
 
 
 
e380bd8
 
 
3cfc2e7
e380bd8
 
 
 
 
 
 
3cfc2e7
e380bd8
 
 
 
3cfc2e7
e380bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cfc2e7
e380bd8
 
 
 
3cfc2e7
 
e380bd8
 
 
 
 
 
3cfc2e7
 
e380bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cfc2e7
 
 
e380bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cfc2e7
 
 
e380bd8
 
 
 
 
 
 
3cfc2e7
e380bd8
 
 
 
3cfc2e7
e380bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cfc2e7
e380bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805894
e380bd8
 
3cfc2e7
 
 
e380bd8
 
 
 
 
 
 
3cfc2e7
 
e380bd8
 
3cfc2e7
 
e380bd8
 
 
 
 
 
 
 
3cfc2e7
e380bd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""Wrapper for big_vision contrastive models.

Before using any of the functions, make sure to call `setup()`.

Choose one of the configs in `MODEL_CONFIGS` and then call `load_model()` to get
the params and model wrapper.
"""

import dataclasses
import enum
import functools
import importlib
import os
import subprocess
import sys
import tempfile

import flax.linen as nn
import jax
import jax.numpy as jnp
import ml_collections
import numpy as np
import PIL.Image
import sentencepiece
from tensorflow.io import gfile
import transformers


def _clone_git(url, destination_folder, commit_hash=None):
  subprocess.run(
      ['git', 'clone', '--depth=1', url, destination_folder], check=True
  )
  if commit_hash:
    subprocess.run(
        ['git', '-C', destination_folder, 'checkout', commit_hash], check=True
    )


def setup(commit_hash=None):
  """Checks out required non-pypi code from Github."""
  for url, dst_name in (
      ('https://github.com/google-research/big_vision', 'big_vision_repo'),
      ('https://github.com/google/flaxformer', 'flaxformer_repo'),
  ):
    dst_path = os.path.join(tempfile.gettempdir(), dst_name)
    if not os.path.exists(dst_path):
      _clone_git(url, dst_path, commit_hash)
    if dst_path not in sys.path:
      sys.path.insert(0, dst_path)


class ContrastiveModelFamily(enum.Enum):
  """Defines a contrastive model family."""
  LIT = 'lit'
  SIGLIP = 'siglip'

  @property
  def paper(self):
    return {
        self.LIT: 'https://arxiv.org/abs/2111.07991',
        self.SIGLIP: 'https://arxiv.org/abs/2303.15343',
    }[self]

  def __lt__(self, other):
    return self.value < other.value


@dataclasses.dataclass(frozen=True, kw_only=True, order=True)
class ContrastiveModelConfig:
  """Desribes a `big_vision` contrastive model."""
  family: ContrastiveModelFamily
  variant: str
  res: int
  textvariant: str
  embdim: int
  seqlen: int
  tokenizer: str
  vocab_size: int
  ckpt: str


@dataclasses.dataclass(frozen=True, kw_only=True)
class ContrastiveModel:
  """Wraps a `big_vision` contrastive model."""

  config: ContrastiveModelConfig
  flax_module: nn.Module
  tokenizer_sp: sentencepiece.SentencePieceProcessor | None
  tokenizer_bert: transformers.BertTokenizer | None

  def embed_images(self, params, images):
    assert getattr(images, 'ndim') == 4, 'Must call `.preprocess_images()`'
    zimg, _, out = self.flax_module.apply(dict(params=params), images, None)
    return zimg, out

  def embed_texts(self, params, texts):
    assert getattr(texts, 'ndim') == 2, 'Must call `.preprocess_texts()`'
    _, ztxt, out = self.flax_module.apply(dict(params=params), None, texts)
    return ztxt, out

  def preprocess_texts(self, texts):
    """Converts texts to padded tokens."""

    def tokenize_pad(text, seqlen=self.config.seqlen):

      if self.config.family == ContrastiveModelFamily.LIT:
        tokens = self.tokenizer_bert.encode(text, add_special_tokens=True)
        tokens = tokens[:-1]  # removes [SEP]
        tokens = tokens[:seqlen]
        return tokens + [0] * (seqlen - len(tokens))

      if self.config.family == ContrastiveModelFamily.SIGLIP:
        tokens = self.tokenizer_sp.tokenize(text, add_eos=True)
        if len(tokens) >= seqlen:
          eos_id = self.tokenizer_sp.eos_id()
          return tokens[:seqlen - 1] + [eos_id]  # "sticky" eos
        return tokens + [0] * (seqlen - len(tokens))

    return np.array([tokenize_pad(text) for text in texts])

  def preprocess_images(self, images):
    if not isinstance(images, (list, tuple)):
      images = [images]
    def topil(image):
      if not isinstance(image, PIL.Image.Image):
        image = PIL.Image.fromarray(image)
      return image
    return np.array([
        topil(image).resize([self.config.res, self.config.res])
        for image in images
    ]) / 127.5 - 1.0

  def get_bias(self, out):
    assert (
        self.config.family == ContrastiveModelFamily.SIGLIP
    ), self.config.family
    return out['b'].item()

  def get_temperature(self, out):
    return out['t'].item()

  def get_probabilities(self, zimg, ztxt, temperature, *, axis=None, bias=None):
    # Note: zimg, ztxt are already normalized.

    if self.config.family == ContrastiveModelFamily.LIT:
      assert bias is None
      assert axis in (-1, -2), 'Must specify axis: -1/-2=normalize texts/images'
      return jax.nn.softmax(zimg @ ztxt.T * temperature, axis=axis)

    if self.config.family == ContrastiveModelFamily.SIGLIP:
      assert axis is None
      assert bias is not None, 'Must specify bias.'
      return jax.nn.sigmoid(zimg @ ztxt.T * temperature + bias)


def _make_config(
    family, variant, res, textvariant, ckpt, embdim, seqlen, vocab_size
):
  if family == 'lit':
    tokenizer = ckpt.replace('.npz', '.txt')
  else:
    tokenizer = 'c4_en'
  return ContrastiveModelConfig(
      family=ContrastiveModelFamily(family), variant=variant, res=res,
      textvariant=textvariant, embdim=embdim, seqlen=seqlen,
      tokenizer=tokenizer, vocab_size=vocab_size,
      ckpt=ckpt,
  )


# pylint: disable=line-too-long
MODEL_CONFIGS = dict(
    lit_b16b=_make_config('lit', 'B/16', 224, 'B', 'gs://vit_models/lit/LiT-B16B.npz', 768, 16, 32_000),
    lit_l16l=_make_config('lit', 'L/16', 224, 'L', 'gs://vit_models/lit/LiT-L16L.npz', 1024, 16, 32_000),
    lit_b16s=_make_config('lit', 'L/16', 224, 'S', 'gs://vit_models/lit/LiT-L16S.npz', 1024, 16, 32_000),
    lit_b16ti=_make_config('lit', 'L/16', 224, 'Ti', 'gs://vit_models/lit/LiT-L16Ti.npz', 1024, 16, 32_000),

    siglip_b16b_224=_make_config('siglip', 'B/16', 224, 'B', 'gs://big_vision/siglip/webli_en_b16_224_63724782.npz', 768, 64, 32_000),
    siglip_b16b_256=_make_config('siglip', 'B/16', 256, 'B', 'gs://big_vision/siglip/webli_en_b16_256_60500360.npz', 768, 64, 32_000),
    siglip_b16b_384=_make_config('siglip', 'B/16', 384, 'B', 'gs://big_vision/siglip/webli_en_b16_384_68578854.npz', 768, 64, 32_000),
    siglip_b16b_512=_make_config('siglip', 'B/16', 512, 'B', 'gs://big_vision/siglip/webli_en_b16_512_68580893.npz', 768, 64, 32_000),
    siglip_l16l_256=_make_config('siglip', 'L/16', 256, 'L', 'gs://big_vision/siglip/webli_en_l16_256_60552751.npz', 1024, 64, 32_000),
    siglip_l16l_384=_make_config('siglip', 'L/16', 384, 'L', 'gs://big_vision/siglip/webli_en_l16_384_63634585.npz', 1024, 64, 32_000),
    siglip_so400m14so440m_224=_make_config('siglip', 'So400m/14', 224, 'So400m', 'gs://big_vision/siglip/webli_en_so400m_224_57633886.npz', 1152, 16, 32_000),
    siglip_so400m14so400m_384=_make_config('siglip', 'So400m/14', 384, 'So400m', 'gs://big_vision/siglip/webli_en_so400m_384_58765454.npz', 1152, 64, 32_000),
)
# pylint: enable=line-too-long


@functools.cache
def load_tokenizer_sp(name_or_path):
  tok = sentencepiece.SentencePieceProcessor()
  path = {
      'c4_en': 'gs://t5-data/vocabs/cc_en.32000/sentencepiece.model',
  }.get(name_or_path, name_or_path)
  tok.LoadFromSerializedProto(gfile.GFile(path, 'rb').read())
  return tok


@functools.cache
def load_tokenizer_bert(path):
  if path.startswith('gs://'):
    dst = tempfile.mktemp()
    gfile.copy(path, dst)
    path = dst
  return transformers.BertTokenizer(path, do_lower_case=True)


def load_model(config, check_params=False):
  """Loads `big_vision` model."""
  assert isinstance(config, ContrastiveModelConfig), type(config)

  cfg = ml_collections.ConfigDict()
  cfg.image_model = 'vit'
  if config.family == ContrastiveModelFamily.LIT:
    cfg.text_model = 'proj.flaxformer.bert'
    cfg.image = dict(
        variant=config.variant, pool_type='tok', head_zeroinit=False
    )
    bert_config = {'B': 'base', 'L': 'large'}[config.textvariant]
    cfg.text = dict(config=bert_config, head_zeroinit=False)
    tokenizer_bert = load_tokenizer_bert(config.tokenizer)
    tokenizer_sp = None
    if config.variant == 'L/16':
      cfg.out_dim = (None, config.embdim)  # (image_out_dim, text_out_dim)
    else:
      # (image_out_dim, text_out_dim)
      cfg.out_dim = (config.embdim, config.embdim)
  else:
    cfg.image = dict(variant=config.variant, pool_type='map')
    # TODO(lbeyer): remove later, default
    cfg.text_model = 'proj.image_text.text_transformer'
    cfg.text = dict(variant=config.textvariant, vocab_size=config.vocab_size)
    cfg.bias_init = -10.0
    tokenizer_sp = load_tokenizer_sp(config.tokenizer)
    tokenizer_bert = None
    cfg.out_dim = (None, config.embdim)  # (image_out_dim, text_out_dim)
  cfg.temperature_init = 10.0

  model_mod = importlib.import_module(
      'big_vision.models.proj.image_text.two_towers')
  model = model_mod.Model(**cfg)

  init_params = None  # Faster but bypasses loading sanity-checks.
  if check_params:
    imgs = jnp.zeros([1, config.res, config.res, 3])
    txts = jnp.zeros([1, config.seqlen], jnp.int32)
    init_params = model.init(jax.random.PRNGKey(0), imgs, txts)['params']
  params_cpu = model_mod.load(init_params, config.ckpt, cfg)

  return params_cpu, ContrastiveModel(
      config=config,
      flax_module=model,
      tokenizer_sp=tokenizer_sp,
      tokenizer_bert=tokenizer_bert,
  )