sentiment-analysis-app / test_model.py
andyqin18's picture
Updated README
66f2f1a
raw
history blame
2.63 kB
import numpy as np
import pandas as pd
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import torch
from tqdm import tqdm
# Global var
TEST_SIZE = 2000
FINE_TUNED_MODEL = "andyqin18/finetuned-bert-uncased"
# Define analyze function
def analyze(text: str):
'''
Input: Text string
Output: Prediction array (6x1) with threshold prob > 0.5
'''
encoding = tokenizer(text, return_tensors="pt")
encoding = {k: v.to(model.device) for k,v in encoding.items()}
outputs = model(**encoding)
logits = outputs.logits
sigmoid = torch.nn.Sigmoid()
probs = sigmoid(logits.squeeze().cpu())
predictions = np.zeros(probs.shape)
predictions[np.where(probs >= 0.5)] = 1
return predictions
# Read dataset and randomly select testing texts and respective labels
df = pd.read_csv("milestone3/comp/train.csv")
labels = df.columns[2:]
num_label = len(labels)
train_texts = df["comment_text"].values
train_labels = df[labels].values
np.random.seed(1)
small_test_texts = np.random.choice(train_texts, size=TEST_SIZE, replace=False)
np.random.seed(1)
small_test_labels_idx = np.random.choice(train_labels.shape[0], size=TEST_SIZE, replace=False)
small_test_labels = train_labels[small_test_labels_idx, :]
# Load model and tokenizer. Prepare for analysis loop
model = AutoModelForSequenceClassification.from_pretrained(FINE_TUNED_MODEL)
tokenizer = AutoTokenizer.from_pretrained(FINE_TUNED_MODEL)
total_true = 0
total_success = 0
TP, FP, TN, FN = 0, 0, 0, 0
# Analysis Loop
for comment_idx in tqdm(range(TEST_SIZE), desc="Analyzing..."):
comment = small_test_texts[comment_idx]
target = small_test_labels[comment_idx]
result = analyze(comment[:500])
# Counting TP, FP, TN, FN
for i in range(num_label):
if result[i] == target[i]:
if result[i] == 1:
TP += 1
else:
TN += 1
else:
if result[i] == 1:
FP += 1
else:
FN += 1
# Counting success prediction of 1) each label, 2) label array
num_true = (result == target).sum()
if num_true == len(labels):
total_success += 1
total_true += num_true
# Calculate performance
performance = {}
performance["label_accuracy"] = total_true/(len(labels) * TEST_SIZE) # Success prediction of each label
performance["prediction_accuracy"] = total_success/TEST_SIZE # Success prediction of all 6 labels for 1 sample
performance["precision"] = TP / (TP + FP) # Label precision
performance["recall"] = TP / (TP + FN) # Label recall
print(performance)