|
import streamlit as st |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
st.title("Sentiment Analysis App - beta") |
|
st.header("This app is to analyze the sentiments behind a text. Currently it uses \ |
|
pre-trained models without fine-tuning.") |
|
|
|
user_input = st.text_input("Enter your text:", value="Missing Sophie.Z...") |
|
st.selectbox("Please select a model:", ("Model 1", "Model 2", "Model 3")) |
|
|
|
|
|
|
|
if st.button("Analyze"): |
|
model_name = "distilbert-base-uncased-finetuned-sst-2-english" |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) |
|
res = classifier(user_input) |
|
st.write(res) |
|
|
|
else: |
|
st.write("Go on! Try the app!") |