File size: 10,138 Bytes
1a14066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import math
import numpy as np
import torch
import torch.nn as nn
import cv2
from einops import rearrange
from imageio import imwrite
from pydantic import validator

from my.utils import (
    tqdm, EventStorage, HeartBeat, EarlyLoopBreak,
    get_event_storage, get_heartbeat, read_stats
)
from my.config import BaseConf, dispatch, optional_load_config
from my.utils.seed import seed_everything

from adapt import ScoreAdapter, karras_t_schedule
from run_img_sampling import GDDPM, SD, StableDiffusion
from misc import torch_samps_to_imgs
from pose import PoseConfig

from run_nerf import VoxConfig
from voxnerf.utils import every
from voxnerf.render import (
    as_torch_tsrs, rays_from_img, ray_box_intersect, render_ray_bundle
)
from voxnerf.vis import stitch_vis, bad_vis as nerf_vis


device_glb = torch.device("cuda")


def tsr_stats(tsr):
    return {
        "mean": tsr.mean().item(),
        "std": tsr.std().item(),
        "max": tsr.max().item(),
    }


class SJC(BaseConf):
    family:     str = "sd"
    gddpm:      GDDPM = GDDPM()
    sd:         SD = SD(
        variant="v1",
        prompt="A high quality photo of a delicious burger",
        scale=100.0
    )
    lr:         float = 0.05
    n_steps:    int = 10000
    vox:        VoxConfig = VoxConfig(
        model_type="V_SD", grid_size=100, density_shift=-1.0, c=3,
        blend_bg_texture=True, bg_texture_hw=4,
        bbox_len=1.0
    )
    pose:       PoseConfig = PoseConfig(rend_hw=64, FoV=60.0, R=1.5)

    emptiness_scale:    int = 10
    emptiness_weight:   int = 1e4
    emptiness_step:     float = 0.5
    emptiness_multiplier: float = 20.0

    depth_weight:       int = 0

    var_red:     bool = True

    @validator("vox")
    def check_vox(cls, vox_cfg, values):
        family = values['family']
        if family == "sd":
            vox_cfg.c = 4
        return vox_cfg

    def run(self):
        cfgs = self.dict()

        family = cfgs.pop("family")
        model = getattr(self, family).make()

        cfgs.pop("vox")
        vox = self.vox.make()

        cfgs.pop("pose")
        poser = self.pose.make()

        sjc_3d(**cfgs, poser=poser, model=model, vox=vox)


def sjc_3d(
    poser, vox, model: ScoreAdapter,
    lr, n_steps, emptiness_scale, emptiness_weight, emptiness_step, emptiness_multiplier,
    depth_weight, var_red, **kwargs
):
    del kwargs

    assert model.samps_centered()
    _, target_H, target_W = model.data_shape()
    bs = 1
    aabb = vox.aabb.T.cpu().numpy()
    vox = vox.to(device_glb)
    opt = torch.optim.Adamax(vox.opt_params(), lr=lr)

    H, W = poser.H, poser.W
    Ks, poses, prompt_prefixes = poser.sample_train(n_steps)

    ts = model.us[30:-10]
    fuse = EarlyLoopBreak(5)

    # same_noise = torch.randn(1, 4, H, W, device=model.device).repeat(bs, 1, 1, 1)
    n_steps=200
    with tqdm(total=n_steps) as pbar, \
        HeartBeat(pbar) as hbeat, \
            EventStorage() as metric:
        for i in range(n_steps):
            if fuse.on_break():
                break

            p = f"{prompt_prefixes[i]} {model.prompt}"
            score_conds = model.prompts_emb([p])
            # text_z = model.get_text_embeds([p],[""])

            score_conds['c']=score_conds['c'].repeat(bs,1,1)
            score_conds['uc']=score_conds['uc'].repeat(bs,1,1)

            y, depth, ws = render_one_view(vox, aabb, H, W, Ks[i], poses[i], return_w=True)

            if isinstance(model, StableDiffusion):
                pass
            else:
                y = torch.nn.functional.interpolate(y, (target_H, target_W), mode='bilinear')

            opt.zero_grad()

            with torch.no_grad():
                chosen_σs = np.random.choice(ts, bs, replace=False)
                chosen_σs = chosen_σs.reshape(-1, 1, 1, 1)
                chosen_σs = torch.as_tensor(chosen_σs, device=model.device, dtype=torch.float32)
                # chosen_σs = us[i]

                noise = torch.randn(bs, *y.shape[1:], device=model.device)

                zs = y + chosen_σs * noise

                Ds = model.denoise(zs, chosen_σs, **score_conds)

                if var_red:
                    grad = (Ds - y) / chosen_σs
                else:
                    grad = (Ds - zs) / chosen_σs

                grad = grad.mean(0, keepdim=True)
                
            y.backward(-grad, retain_graph=True)

            if depth_weight > 0:
                center_depth = depth[7:-7, 7:-7]
                border_depth_mean = (depth.sum() - center_depth.sum()) / (64*64-50*50)
                center_depth_mean = center_depth.mean()
                depth_diff = center_depth_mean - border_depth_mean
                depth_loss = - torch.log(depth_diff + 1e-12)
                depth_loss = depth_weight * depth_loss
                depth_loss.backward(retain_graph=True)

            emptiness_loss = torch.log(1 + emptiness_scale * ws).mean()
            emptiness_loss = emptiness_weight * emptiness_loss
            if emptiness_step * n_steps <= i:
                emptiness_loss *= emptiness_multiplier
            emptiness_loss.backward()

            opt.step()

            metric.put_scalars(**tsr_stats(y))

            if every(pbar, percent=1):
                with torch.no_grad():
                    if isinstance(model, StableDiffusion):
                        y = model.decode(y)
                    # print(y.shape)
                    # print(depth.shape)
                    vis_routine(metric, y, depth)

            # if every(pbar, step=2500):
            #     metric.put_artifact(
            #         "ckpt", ".pt", lambda fn: torch.save(vox.state_dict(), fn)
            #     )
            #     with EventStorage("test"):
            #         evaluate(model, vox, poser)

            metric.step()
            pbar.update()
            pbar.set_description(p)
            hbeat.beat()

        metric.put_artifact(
            "ckpt", ".pt", lambda fn: torch.save(vox.state_dict(), fn)
        )
        with EventStorage("test"):
            evaluate(model, vox, poser)

        metric.step()

        hbeat.done()


@torch.no_grad()
def evaluate(score_model, vox, poser):
    H, W = poser.H, poser.W
    vox.eval()
    K, poses = poser.sample_test(100)

    fuse = EarlyLoopBreak(5)
    metric = get_event_storage()
    hbeat = get_heartbeat()

    aabb = vox.aabb.T.cpu().numpy()
    vox = vox.to(device_glb)

    num_imgs = len(poses)

    for i in (pbar := tqdm(range(num_imgs))):
        if fuse.on_break():
            break

        pose = poses[i]
        y, depth = render_one_view(vox, aabb, H, W, K, pose)
        if isinstance(score_model, StableDiffusion):
            y = score_model.decode(y)
        vis_routine(metric, y, depth)

        metric.step()
        hbeat.beat()
    metric.step()


def render_one_view(vox, aabb, H, W, K, pose, return_w=False):
    N = H * W
    ro, rd = rays_from_img(H, W, K, pose)
    # print(ro.shape)
    ro, rd, t_min, t_max = scene_box_filter(ro, rd, aabb)
    
    assert len(ro) == N, "for now all pixels must be in"
    ro, rd, t_min, t_max = as_torch_tsrs(vox.device, ro, rd, t_min, t_max)
    rgbs, depth, weights = render_ray_bundle(vox, ro, rd, t_min, t_max)

    rgbs = rearrange(rgbs, "(h w) c -> 1 c h w", h=H, w=W)
    depth = rearrange(depth, "(h w) 1 -> h w", h=H, w=W)
    if return_w:
        return rgbs, depth, weights
    else:
        return rgbs, depth


def scene_box_filter(ro, rd, aabb):
    _, t_min, t_max = ray_box_intersect(ro, rd, aabb)
    # do not render what's behind the ray origin
    t_min, t_max = np.maximum(t_min, 0), np.maximum(t_max, 0)
    return ro, rd, t_min, t_max


def vis_routine(metric, y, depth):
    pane = nerf_vis(y, depth, final_H=256)
    im = torch_samps_to_imgs(y)[0]
    
    # depth_ = torch.nn.functional.interpolate(
    #     depth.unsqueeze(dim=0).unsqueeze(dim=0), (512,512), mode='bilinear', antialias=True
    #     )
   
    depth_pt = depth.squeeze().clone()
    mask=(depth_pt<5)
    # import pdb; pdb.set_trace()

    depth_pt = -1* depth_pt
    depth_pt -= torch.min(depth_pt)
    depth_pt /= torch.max(depth_pt)


    depth_pt = depth_pt.cpu().numpy()
    bg_th=0.01
    depth_np = -1*depth.squeeze()
    depth_np[mask] -= torch.min(depth_np[mask])
    depth_np[mask] /= torch.max(depth_np[mask])
    depth_np[~mask] = torch.min(depth_np[mask])
    depth_np=depth_np.cpu().numpy()
    # depth_np = np.log(1. + depth_np + 1e-12)
    x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, scale=1000, ksize=3)
    y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, scale=1000,ksize=3)
    z = np.ones_like(x) * 2*np.pi
    x[depth_pt < bg_th] = 0
    y[depth_pt < bg_th] = 0
    normal = np.stack([x, y, z], axis=2)
    normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
    normal=np.array(torch.nn.functional.interpolate(torch.from_numpy(normal).permute(2,0,1).unsqueeze(dim=0),(512,512),mode='bilinear').squeeze().cpu().permute(1,2,0))
    normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)


    depth = depth.cpu().numpy()
    metric.put_artifact("normal",'.png',"",lambda fn: imwrite(fn, normal_image))
    metric.put_artifact("view", ".png", "",lambda fn: imwrite(fn, pane))
    metric.put_artifact("img", ".png", "",lambda fn: imwrite(fn, im))
    metric.put_artifact("depth", ".npy","", lambda fn: np.save(fn, depth))


def evaluate_ckpt():
    cfg = optional_load_config(fname="full_config.yml")
    assert len(cfg) > 0, "can't find cfg file"
    mod = SJC(**cfg)

    family = cfg.pop("family")
    model: ScoreAdapter = getattr(mod, family).make()
    vox = mod.vox.make()
    poser = mod.pose.make()

    pbar = tqdm(range(1))

    with EventStorage(), HeartBeat(pbar):
        ckpt_fname = latest_ckpt()
        state = torch.load(ckpt_fname, map_location="cpu")
        vox.load_state_dict(state)
        vox.to(device_glb)

        with EventStorage("test"):
            evaluate(model, vox, poser)


def latest_ckpt():
    ts, ys = read_stats("./", "ckpt")
    assert len(ys) > 0
    return ys[-1]


if __name__ == "__main__":
    seed_everything(0)
    dispatch(SJC)
    # evaluate_ckpt()