import os import numpy as np import torch import torch.nn as nn from PIL import Image from my.utils import tqdm from pytorch3d.structures import Pointclouds from pytorch3d.renderer.cameras import PerspectiveCameras from pytorch3d.renderer import ( PointsRasterizer, AlphaCompositor, look_at_view_transform, ) import torch.nn.functional as F from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config from point_e.diffusion.sampler import PointCloudSampler from point_e.models.download import load_checkpoint from point_e.models.configs import MODEL_CONFIGS, model_from_config class PointsRenderer(nn.Module): """ Modified version of Pytorch3D PointsRenderer """ def __init__(self, rasterizer, compositor) -> None: super().__init__() self.rasterizer = rasterizer self.compositor = compositor def to(self, device): # Manually move to device rasterizer as the cameras # within the class are not of type nn.Module self.rasterizer = self.rasterizer.to(device) self.compositor = self.compositor.to(device) return self def forward(self, point_clouds, **kwargs) -> torch.Tensor: fragments = self.rasterizer(point_clouds, **kwargs) # import pdb; pdb.set_trace() depth_map = fragments[1][0,...,:1] # Construct weights based on the distance of a point to the true point. # However, this could be done differently: e.g. predicted as opposed # to a function of the weights. r = self.rasterizer.raster_settings.radius dists2 = fragments.dists.permute(0, 3, 1, 2) weights = 1 - dists2 / (r * r) images = self.compositor( fragments.idx.long().permute(0, 3, 1, 2), weights, point_clouds.features_packed().permute(1, 0), **kwargs, ) # permute so image comes at the end images = images.permute(0, 2, 3, 1) return images, depth_map def render_depth_from_cloud(points, angles, raster_settings, device,calibration_value=0): radius = 2.3 horizontal = angles[0]+calibration_value elevation = angles[1] FoV = angles[2] camera = py3d_camera(radius, elevation, horizontal, FoV, device) point_loc = torch.tensor(points.coords).to(device) colors = torch.tensor(np.stack([points.channels["R"], points.channels["G"], points.channels["B"]], axis=-1)).to(device) matching_rotation = torch.tensor([[[1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, -1.0, 0.0]]]).to(device) rot_points = (matching_rotation @ point_loc[...,None]).squeeze() point_cloud = Pointclouds(points=[rot_points], features=[colors]) _, raw_depth_map = pointcloud_renderer(point_cloud, camera, raster_settings, device) disparity = camera.focal_length[0,0] / (raw_depth_map + 1e-9) max_disp = torch.max(disparity) min_disp = torch.min(disparity[disparity > 0]) norm_disparity = (disparity - min_disp) / (max_disp - min_disp) mask = norm_disparity > 0 norm_disparity = norm_disparity * mask depth_map = F.interpolate(norm_disparity.permute(2,0,1)[None,...],size=512,mode='bilinear')[0] depth_map = depth_map.repeat(3,1,1) return depth_map def py3d_camera(radius, elevation, horizontal, FoV, device, img_size=800): fov_rad = torch.deg2rad(torch.tensor(FoV)) focal = 1 / torch.tan(fov_rad / 2) * (2. / 2) focal_length = torch.tensor([[focal,focal]]).float() image_size = torch.tensor([[img_size,img_size]]).double() R, T = look_at_view_transform(dist=radius, elev=elevation, azim=horizontal, degrees=True) camera = PerspectiveCameras( R=R, T=T, focal_length=focal_length, image_size=image_size, device=device, ) return camera def pointcloud_renderer(point_cloud, camera, raster_settings, device): camera = camera.to(device) rasterizer = PointsRasterizer(cameras=camera, raster_settings=raster_settings) renderer = PointsRenderer( rasterizer=rasterizer, compositor=AlphaCompositor() ).to(device) image = renderer(point_cloud) return image def point_e(device,exp_dir): print('creating base model...') base_name = 'base1B' # use base300M or base1B for better results base_model = model_from_config(MODEL_CONFIGS[base_name], device) base_model.eval() base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name]) print('creating upsample model...') upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) upsampler_model.eval() upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) print('downloading base checkpoint...') base_model.load_state_dict(load_checkpoint(base_name, device)) print('downloading upsampler checkpoint...') upsampler_model.load_state_dict(load_checkpoint('upsample', device)) sampler = PointCloudSampler( device=device, models=[base_model, upsampler_model], diffusions=[base_diffusion, upsampler_diffusion], num_points=[1024, 4096 - 1024], aux_channels=['R', 'G', 'B'], guidance_scale=[3.0, 3.0], ) img = Image.open(os.path.join(exp_dir,'initial_image','instance0.png')) samples = None for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(images=[img]))): samples = x pc = sampler.output_to_point_clouds(samples)[0] return pc def point_e_gradio(img,device): print('creating base model...') base_name = 'base1B' # use base300M or base1B for better results base_model = model_from_config(MODEL_CONFIGS[base_name], device) base_model.eval() base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name]) print('creating upsample model...') upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device) upsampler_model.eval() upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample']) print('downloading base checkpoint...') base_model.load_state_dict(load_checkpoint(base_name, device)) print('downloading upsampler checkpoint...') upsampler_model.load_state_dict(load_checkpoint('upsample', device)) sampler = PointCloudSampler( device=device, models=[base_model, upsampler_model], diffusions=[base_diffusion, upsampler_diffusion], num_points=[1024, 4096 - 1024], aux_channels=['R', 'G', 'B'], guidance_scale=[3.0, 3.0], ) samples = None for x in tqdm(sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(images=[img]))): samples = x pc = sampler.output_to_point_clouds(samples)[0] return pc