Spaces:
Running
Running
from diffusers import AutoencoderKL | |
import torch | |
import torchvision.transforms as transforms | |
import torch.nn.functional as F | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import os | |
class VAE(): | |
""" | |
VAE (Variational Autoencoder) class for image processing. | |
""" | |
def __init__(self, model_path="./models/sd-vae-ft-mse/", resized_img=256, use_float16=False): | |
""" | |
Initialize the VAE instance. | |
:param model_path: Path to the trained model. | |
:param resized_img: The size to which images are resized. | |
:param use_float16: Whether to use float16 precision. | |
""" | |
self.model_path = model_path | |
self.vae = AutoencoderKL.from_pretrained(self.model_path) | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
self.vae.to(self.device) | |
if use_float16: | |
self.vae = self.vae.half() | |
self._use_float16 = True | |
else: | |
self._use_float16 = False | |
self.scaling_factor = self.vae.config.scaling_factor | |
self.transform = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
self._resized_img = resized_img | |
self._mask_tensor = self.get_mask_tensor() | |
def get_mask_tensor(self): | |
""" | |
Creates a mask tensor for image processing. | |
:return: A mask tensor. | |
""" | |
mask_tensor = torch.zeros((self._resized_img,self._resized_img)) | |
mask_tensor[:self._resized_img//2,:] = 1 | |
mask_tensor[mask_tensor< 0.5] = 0 | |
mask_tensor[mask_tensor>= 0.5] = 1 | |
return mask_tensor | |
def preprocess_img(self,img_name,half_mask=False): | |
""" | |
Preprocess an image for the VAE. | |
:param img_name: The image file path or a list of image file paths. | |
:param half_mask: Whether to apply a half mask to the image. | |
:return: A preprocessed image tensor. | |
""" | |
window = [] | |
if isinstance(img_name, str): | |
window_fnames = [img_name] | |
for fname in window_fnames: | |
img = cv2.imread(fname) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(img, (self._resized_img, self._resized_img), | |
interpolation=cv2.INTER_LANCZOS4) | |
window.append(img) | |
else: | |
img = cv2.cvtColor(img_name, cv2.COLOR_BGR2RGB) | |
window.append(img) | |
x = np.asarray(window) / 255. | |
x = np.transpose(x, (3, 0, 1, 2)) | |
x = torch.squeeze(torch.FloatTensor(x)) | |
if half_mask: | |
x = x * (self._mask_tensor>0.5) | |
x = self.transform(x) | |
x = x.unsqueeze(0) # [1, 3, 256, 256] torch tensor | |
x = x.to(self.vae.device) | |
return x | |
def encode_latents(self,image): | |
""" | |
Encode an image into latent variables. | |
:param image: The image tensor to encode. | |
:return: The encoded latent variables. | |
""" | |
with torch.no_grad(): | |
init_latent_dist = self.vae.encode(image.to(self.vae.dtype)).latent_dist | |
init_latents = self.scaling_factor * init_latent_dist.sample() | |
return init_latents | |
def decode_latents(self, latents): | |
""" | |
Decode latent variables back into an image. | |
:param latents: The latent variables to decode. | |
:return: A NumPy array representing the decoded image. | |
""" | |
latents = (1/ self.scaling_factor) * latents | |
image = self.vae.decode(latents.to(self.vae.dtype)).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.detach().cpu().permute(0, 2, 3, 1).float().numpy() | |
image = (image * 255).round().astype("uint8") | |
image = image[...,::-1] # RGB to BGR | |
return image | |
def get_latents_for_unet(self,img): | |
""" | |
Prepare latent variables for a U-Net model. | |
:param img: The image to process. | |
:return: A concatenated tensor of latents for U-Net input. | |
""" | |
ref_image = self.preprocess_img(img,half_mask=True) # [1, 3, 256, 256] RGB, torch tensor | |
masked_latents = self.encode_latents(ref_image) # [1, 4, 32, 32], torch tensor | |
ref_image = self.preprocess_img(img,half_mask=False) # [1, 3, 256, 256] RGB, torch tensor | |
ref_latents = self.encode_latents(ref_image) # [1, 4, 32, 32], torch tensor | |
latent_model_input = torch.cat([masked_latents, ref_latents], dim=1) | |
return latent_model_input | |
if __name__ == "__main__": | |
vae_mode_path = "./models/sd-vae-ft-mse/" | |
vae = VAE(model_path = vae_mode_path,use_float16=False) | |
img_path = "./results/sun001_crop/00000.png" | |
crop_imgs_path = "./results/sun001_crop/" | |
latents_out_path = "./results/latents/" | |
if not os.path.exists(latents_out_path): | |
os.mkdir(latents_out_path) | |
files = os.listdir(crop_imgs_path) | |
files.sort() | |
files = [file for file in files if file.split(".")[-1] == "png"] | |
for file in files: | |
index = file.split(".")[0] | |
img_path = crop_imgs_path + file | |
latents = vae.get_latents_for_unet(img_path) | |
print(img_path,"latents",latents.size()) | |
#torch.save(latents,os.path.join(latents_out_path,index+".pt")) | |
#reload_tensor = torch.load('tensor.pt') | |
#print(reload_tensor.size()) | |