anilbhatt1 commited on
Commit
a12f9e6
·
1 Parent(s): 519b661

Upload app.py after modify fastsam imports

Browse files
Files changed (1) hide show
  1. app.py +6 -33
app.py CHANGED
@@ -1,31 +1,14 @@
1
  import os
2
- import cv2
3
  import numpy as np
4
  from PIL import Image
5
  import gradio as gr
6
- import json
7
- import matplotlib.pyplot as plt
8
- import subprocess
9
-
10
- repo_url = "https://github.com/CASIA-IVA-Lab/FastSAM.git"
11
- target_directory = "./FastSAM"
12
- subprocess.run(['git', 'clone', repo_url, target_directory])
13
- os.chdir('./FastSAM')
14
- print('pwd: ', os.getcwd())
15
-
16
- from fastsam import FastSAM, FastSAMPrompt
17
- import ast
18
  import torch
19
- from PIL import Image
20
- from utils.tools import convert_box_xywh_to_xyxy
21
 
22
  def gradio_fn(pil_input_img):
23
  # load model
24
  model = FastSAM('./weights/FastSAM.pt')
25
- args_point_prompt = ast.literal_eval("[[0,0]]")
26
- args_box_prompt = convert_box_xywh_to_xyxy(ast.literal_eval("[[0,0,0,0]]"))
27
- args_point_label = ast.literal_eval("[0]")
28
- args_text_prompt = None
29
  input = pil_input_img
30
  input = input.convert("RGB")
31
  everything_results = model(
@@ -40,19 +23,7 @@ def gradio_fn(pil_input_img):
40
  points = None
41
  point_label = None
42
  prompt_process = FastSAMPrompt(input, everything_results, device="cpu")
43
- if args_box_prompt[0][2] != 0 and args_box_prompt[0][3] != 0:
44
- ann = prompt_process.box_prompt(bboxes=args_box_prompt)
45
- bboxes = args_box_prompt
46
- elif args_text_prompt != None:
47
- ann = prompt_process.text_prompt(text=args_text_prompt)
48
- elif args_point_prompt[0] != [0, 0]:
49
- ann = prompt_process.point_prompt(
50
- points=args_point_prompt, pointlabel=args_point_label
51
- )
52
- points = args_point_prompt
53
- point_label = args_point_label
54
- else:
55
- ann = prompt_process.everything_prompt()
56
  prompt_process.plot(
57
  annotations=ann,
58
  output_path="./output.jpg",
@@ -73,4 +44,6 @@ demo = gr.Interface(fn=gradio_fn,
73
  description="- **FastSAM** model that returns segmented RGB image of given input image. \
74
  - **Credits** : \
75
  - https://huggingface.co/An-619 \
76
- - https://github.com/CASIA-IVA-Lab/FastSAM")
 
 
 
1
  import os
 
2
  import numpy as np
3
  from PIL import Image
4
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
5
  import torch
6
+ import matplotlib.pyplot as plt
7
+ from fastsam import FastSAM, FastSAMPrompt
8
 
9
  def gradio_fn(pil_input_img):
10
  # load model
11
  model = FastSAM('./weights/FastSAM.pt')
 
 
 
 
12
  input = pil_input_img
13
  input = input.convert("RGB")
14
  everything_results = model(
 
23
  points = None
24
  point_label = None
25
  prompt_process = FastSAMPrompt(input, everything_results, device="cpu")
26
+ ann = prompt_process.everything_prompt()
 
 
 
 
 
 
 
 
 
 
 
 
27
  prompt_process.plot(
28
  annotations=ann,
29
  output_path="./output.jpg",
 
44
  description="- **FastSAM** model that returns segmented RGB image of given input image. \
45
  - **Credits** : \
46
  - https://huggingface.co/An-619 \
47
+ - https://github.com/CASIA-IVA-Lab/FastSAM")
48
+
49
+ demo.launch(share=True)