Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,47 @@
|
|
1 |
-
|
2 |
-
drive.mount("/content/drive")
|
3 |
-
!pip install langchain sentence-transformers chromadb llama-cpp-python langchain_community pypdf
|
4 |
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
5 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
7 |
from langchain.vectorstores import Chroma
|
8 |
from langchain_community.llms import LlamaCpp
|
9 |
-
from langchain.
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
import os
|
16 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
|
19 |
vectorstore = Chroma.from_documents(chunks, embeddings)
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
llm=LlamaCpp(
|
26 |
-
model_path=
|
27 |
temperature=0.2,
|
28 |
max_tokens=2048,
|
29 |
top_p=1
|
30 |
)
|
31 |
-
|
|
|
|
|
32 |
<|context|>
|
33 |
-
You are
|
34 |
Please be truthful and give direct answers.
|
35 |
</s>
|
36 |
<|user|>
|
@@ -38,32 +49,18 @@ Please be truthful and give direct answers.
|
|
38 |
</s>
|
39 |
<|assistant|>
|
40 |
"""
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
rag_chain=(
|
46 |
-
{"context":retriever,"query":RunnablePassthrough()}
|
47 |
| prompt
|
48 |
| llm
|
49 |
| StrOutputParser()
|
50 |
-
|
51 |
-
response=rag_chain.invoke("query")
|
52 |
-
response
|
53 |
-
import sys
|
54 |
-
while True:
|
55 |
-
user_input=input(f"Input query: ")
|
56 |
-
if user_input=='exit':
|
57 |
-
print("Exiting...")
|
58 |
-
sys.exit()
|
59 |
-
if user_input=="":
|
60 |
-
continue
|
61 |
-
result=rag_chain.invoke(user_input)
|
62 |
-
print("Answer: ",result)
|
63 |
-
!pip install gradio
|
64 |
-
import gradio as gr
|
65 |
|
66 |
-
# Define a function
|
67 |
def chatbot_ui(user_query):
|
68 |
if not user_query.strip():
|
69 |
return "Please enter a valid query."
|
@@ -75,11 +72,11 @@ def chatbot_ui(user_query):
|
|
75 |
|
76 |
# Create the Gradio interface
|
77 |
interface = gr.Interface(
|
78 |
-
fn=chatbot_ui,
|
79 |
inputs=gr.Textbox(label="Enter your medical query:", placeholder="Ask a medical question here..."),
|
80 |
outputs=gr.Textbox(label="Chatbot Response"),
|
81 |
title="Medical Assistant Chatbot",
|
82 |
-
description="A chatbot
|
83 |
examples=[
|
84 |
["What are the symptoms of diabetes?"],
|
85 |
["Explain the risk factors of heart disease."],
|
@@ -87,5 +84,6 @@ interface = gr.Interface(
|
|
87 |
]
|
88 |
)
|
89 |
|
90 |
-
# Launch the Gradio
|
91 |
-
|
|
|
|
1 |
+
import os
|
|
|
|
|
2 |
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
3 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
4 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
5 |
from langchain.vectorstores import Chroma
|
6 |
from langchain_community.llms import LlamaCpp
|
7 |
+
from langchain.prompts import ChatPromptTemplate
|
8 |
+
from langchain.schema.runnable import RunnablePassthrough
|
9 |
+
from langchain.schema.output_parser import StrOutputParser
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
# Environment variable for Hugging Face API token
|
|
|
13 |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
14 |
|
15 |
+
# Paths for PDFs and model (upload these to the Hugging Face Space)
|
16 |
+
PDF_DIR = "./Data" # Replace with the path where you upload your PDFs
|
17 |
+
MODEL_PATH = "./BioMistral-7B.Q4_K_M.gguf" # Replace with the model's path in the Space
|
18 |
+
|
19 |
+
# Load and process PDF documents
|
20 |
+
loader = PyPDFDirectoryLoader(PDF_DIR)
|
21 |
+
docs = loader.load()
|
22 |
+
|
23 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
|
24 |
+
chunks = text_splitter.split_documents(docs)
|
25 |
+
|
26 |
+
# Create embeddings and vector store
|
27 |
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
|
28 |
vectorstore = Chroma.from_documents(chunks, embeddings)
|
29 |
+
|
30 |
+
# Retriever for querying
|
31 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
|
32 |
+
|
33 |
+
# Initialize the LLM
|
34 |
+
llm = LlamaCpp(
|
35 |
+
model_path=MODEL_PATH,
|
36 |
temperature=0.2,
|
37 |
max_tokens=2048,
|
38 |
top_p=1
|
39 |
)
|
40 |
+
|
41 |
+
# Define the prompt template
|
42 |
+
template = """
|
43 |
<|context|>
|
44 |
+
You are a Medical Assistant that follows instructions and generates accurate responses based on the query and the context provided.
|
45 |
Please be truthful and give direct answers.
|
46 |
</s>
|
47 |
<|user|>
|
|
|
49 |
</s>
|
50 |
<|assistant|>
|
51 |
"""
|
52 |
+
|
53 |
+
prompt = ChatPromptTemplate.from_template(template)
|
54 |
+
|
55 |
+
# Define the RAG chain
|
56 |
+
rag_chain = (
|
57 |
+
{"context": retriever, "query": RunnablePassthrough()}
|
58 |
| prompt
|
59 |
| llm
|
60 |
| StrOutputParser()
|
61 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Define a function for the Gradio UI
|
64 |
def chatbot_ui(user_query):
|
65 |
if not user_query.strip():
|
66 |
return "Please enter a valid query."
|
|
|
72 |
|
73 |
# Create the Gradio interface
|
74 |
interface = gr.Interface(
|
75 |
+
fn=chatbot_ui,
|
76 |
inputs=gr.Textbox(label="Enter your medical query:", placeholder="Ask a medical question here..."),
|
77 |
outputs=gr.Textbox(label="Chatbot Response"),
|
78 |
title="Medical Assistant Chatbot",
|
79 |
+
description="A chatbot designed for heart patients, providing accurate and reliable medical information.",
|
80 |
examples=[
|
81 |
["What are the symptoms of diabetes?"],
|
82 |
["Explain the risk factors of heart disease."],
|
|
|
84 |
]
|
85 |
)
|
86 |
|
87 |
+
# Launch the Gradio app
|
88 |
+
if __name__ == "__main__":
|
89 |
+
interface.launch()
|