Spaces:
Sleeping
Sleeping
File size: 11,582 Bytes
ec86e95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
from langchain.document_loaders import PyPDFLoader, TextLoader, Docx2txtLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.document_loaders import PDFMinerLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain import HuggingFaceHub
from langchain.chains.summarize import load_summarize_chain
from langchain.chains.llm_summarization_checker.base import LLMSummarizationCheckerChain
from langchain.prompts import PromptTemplate
import os
import gradio as gr
import shutil
import re
import tempfile
import cache
from pathlib import Path
from google.colab import userdata
api=userdata.get('api')
api_token=api
# api_token =
os.environ["HUGGINFACEHUB_API_TOKEN"]=api_token
temp_dir = "/content/sample_data"
def data_ingestion(file_path):
if not os.path.exists(file_path):
raise ValueError(f"File path {file_path} does not exist.")
path = Path(file_path)
file_ext = path.suffix
# file_ext = os.path.splitext(file_path)[-1]
# if file_ext == ".pdf":
# # loader = PyPDFLoader(file_path)
# loader = PDFMinerLoader(file_path)
# document= loader.load()
# elif file_ext in {".docx", ".doc"}:
# loader = Docx2txtLoader(file_path)
# document= loader.load()
# elif file_ext == ".txt":
# loader = TextLoader(file_path)
# document= loader.load()
loader = PDFMinerLoader(file_path)
document= loader.load()
length = len(document[0].page_content)
# Replace CharacterTextSplitter with RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
split_docs = text_splitter.split_documents(document)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'})
llm = HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
model_kwargs={"temperature":1, "max_length":10000},
huggingfacehub_api_token=api_token)
return split_docs
# text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
# chunk_size=2000, chunk_overlap=0
# )
# split_docs = text_splitter.split_documents(document)
# documents=split_text_into_batches(str(document),400)
# len(documents)
# documents[0]
# #
# from langchain.text_splitter import CharacterTextSplitter
# text_splitter = CharacterTextSplitter(chunk_size=200, chunk_overlap=0)
# documents = text_splitter.split_documents(document)
# Embeddings
# from langchain.chains.question_answering import load_qa_chain
########## CHAIN 1 norm text
def chain1():
prompt_template = """Write a concise summary of the following:
{text}
SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
refine_template = (
"Your job is to produce a final summary\n"
# "We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Given the new context, refine the original summary in English"
"If the context isn't useful, return the original summary." )
refine_prompt = PromptTemplate.from_template(refine_template)
chain1 = load_summarize_chain(
llm=HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
model_kwargs={"temperature":1, "max_length":10000},
huggingfacehub_api_token=api_token),
chain_type="refine",
question_prompt=prompt,
# refine_prompt=refine_prompt,
return_intermediate_steps=False,
input_key="input_documents",
output_key="output_text",
)
return chain1
# result = chain({"input_documents":split_docs}, return_only_outputs=True)
########## CHAIN 2 research paper
def chain2():
prompt_template = """This is a Research Paper,your job is to summarise the text portion without any symbols or special characters, skip the mathematical equations for now:
{text}
SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
refine_template = (
"Your job is to produce a final summary\n"
# "We have provided an existing summary up to a certain point: {existing_answer}\n"
"We have the opportunity to refine the existing summary"
"(only if needed) with some more context below.\n"
"------------\n"
"{text}\n"
"------------\n"
"Given the new context, refine the original summary in English"
"If the context isn't useful, return the original summary." )
refine_prompt = PromptTemplate.from_template(refine_template)
chain2 = load_summarize_chain(
llm = HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
model_kwargs={"temperature":1, "max_length":10000},
huggingfacehub_api_token=api_token),
chain_type = "refine",
question_prompt = prompt,
# refine_prompt = refine_prompt,
return_intermediate_steps=False,
input_key="input_documents",
output_key="output_text",
)
return chain2
# result = chain({"input_documents":split_docs}, return_only_outputs=True)
########## CHAIN 3 arxiv_paper_1
def chain3():
prompt_template = """You are being given a markdown document with headers, this is part of a larger arxiv paper. Your job is to write a summary of the document.
here is the content of the section:
"{text}"
SUMMARY:"""
prompt = PromptTemplate.from_template(prompt_template)
refine_template = ("""You are presented with a collection of text snippets. Each snippet is a summary of a specific section from an academic paper published on arXiv. Your objective is to synthesize these snippets into a coherent, concise summary of the entire paper.
DOCUMENT SNIPPETS:
"{text}"
INSTRUCTIONS: Craft a concise summary below, capturing the essence of the paper based on the provided snippets.
It is also important that you highlight the key contributions of the paper, and 3 key takeaways from the paper.
Lastly you should provide a list of 5 questions that you would ask the author of the paper if you had the chance. Remove all the backslash n (\n)
SUMMARY:
"""
)
refine_prompt = PromptTemplate.from_template(refine_template)
chain3 = load_summarize_chain(
llm=HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
model_kwargs={"temperature":1, "max_length":10000},
huggingfacehub_api_token=api_token),
chain_type="refine",
question_prompt=prompt,
# refine_prompt=refine_prompt,
return_intermediate_steps=False,
input_key="input_documents",
output_key="output_text",
)
return chain3
# result = chain({"input_documents":split_docs}, return_only_outputs=True)
# chain.run(document)
# print(result["output_text"])
def chain_function(checkbox_values):
if "Research Paper" in checkbox_values:
output = chain3()
elif "Legal Document" in checkbox_values:
output = chain2()
elif "Study Material" in checkbox_values:
output = chain1()
else:
output = "Please select a document type to run."
return output
def result(chain, split_docs):
summaries = []
for doc in split_docs:
result = chain({"input_documents": [doc]})
# result = chain({"input_documents": [doc]}, return_only_outputs=True)
summaries.append(result["output_text"])
text_concat = ""
for i in summaries:
text_concat += i
# output = re.sub(r'\n'," "," ",text_concat)
return text_concat
title = """<p style="font-family:Century Gothic; text-align:center; font-size: 100px">S I M P L I F Y</p>"""
# description = r"""<p style="font-family: Century Gothic; text-align:center; font-size: 100px">S I M P L I F Y</p>
# """
# article = r"""
# If PhotoMaker is helpful, please help to β the <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'>Github Repo</a>. Thanks!
# [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/PhotoMaker?style=social)](https://github.com/TencentARC/PhotoMaker)
# ---
# π **Citation**
# <br>
# If our work is useful for your research, please consider citing:
# ```bibtex
# @article{li2023photomaker,
# title={PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding},
# author={Li, Zhen and Cao, Mingdeng and Wang, Xintao and Qi, Zhongang and Cheng, Ming-Ming and Shan, Ying},
# booktitle={arXiv preprint arxiv:2312.04461},
# year={2023}
# }
# ```
# π **License**
# <br>
# Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/TencentARC/PhotoMaker/blob/main/LICENSE) for details.
# π§ **Contact**
# <br>
# If you have any questions, please feel free to reach me out at <b>zhenli1031@gmail.com</b>.
# """
# tips = r"""
# ### Usage tips of PhotoMaker
# 1. Upload more photos of the person to be customized to **improve ID fidelty**. If the input is Asian face(s), maybe consider adding 'asian' before the class word, e.g., `asian woman img`
# 2. When stylizing, does the generated face look too realistic? Adjust the **Style strength** to 30-50, the larger the number, the less ID fidelty, but the stylization ability will be better.
# 3. If you want to generate realistic photos, you could try switching to our other gradio application [PhotoMaker](https://huggingface.co/spaces/TencentARC/PhotoMaker).
# 4. For **faster** speed, reduce the number of generated images and sampling steps. However, please note that reducing the sampling steps may compromise the ID fidelity.
# """
# def process_file(file_obj):
# destination_path = "/content/sample_data" # Replace with your desired path
# shutil.copy(file_obj, destination_path) # Save file to specified path
# return os.path.join(destination_path, file_obj)
def process_file(list_file_obj):
# list_file_path = [x.name for x in list_file_obj if x is not None]
# file_content = file_obj.data
# with tempfile.TemporaryFile() as temp_file:
# temp_file.write(file_content)
# temp_file_path = temp_file.name
return list_file_obj[0].name
def inference(checkbox_values, uploaded_file):
file_path = process_file(uploaded_file)
split_docs = data_ingestion(file_path)
chain = chain_function(checkbox_values)
summary = result(chain, split_docs)
return summary
with gr.Blocks(theme="monochrome") as demo:
gr.Markdown(title)
with gr.Row():
with gr.Column():
checkbox_values = gr.CheckboxGroup(["Research Paper", "Legal Document", "Study Material"], label="Choose the document type")
uploaded_file = gr.Files(height=100, file_count="multiple", file_types=["text", ".docx", "pdf"], interactive=True, label="Upload your File.")
btn = gr.Button("Submit") # Place the button outside the Row for vertical alignment
with gr.Column():
txt = gr.Textbox(
show_label=False,scale=2,
# placeholder="Simplify."
)
btn.click(
fn=inference,
inputs=[checkbox_values, uploaded_file],
outputs=[txt],
queue=False
)
# debug = True
demo.launch(debug = True)
|