anishde commited on
Commit
23cde69
1 Parent(s): 43d73b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +39 -27
app.py CHANGED
@@ -88,39 +88,51 @@ def data_ingestion(file_path):
88
  ########## CHAIN 1 norm text
89
 
90
  def chain1():
91
- prompt_template = """Please provide a summary of the given study material. Summarize the key concepts, findings, and important details.
92
- Pay special attention to any definitions, theories, or conclusions presented in the text.
93
- Your summary should be concise yet comprehensive, capturing the main points of the study material.
94
- Your job is to write a summary of the document such that every summary of the text is of 2 sentences.
95
- here is the content of the section:
96
- "{text}"
97
-
98
- SUMMARY:"""
99
- prompt = PromptTemplate.from_template(prompt_template)
100
-
101
- refine_template = (
102
- "Your job is to produce a final summary\n"
103
- # "We have provided an existing summary up to a certain point: {existing_answer}\n"
104
- "We have the opportunity to refine the existing summary"
105
- "(only if needed) with some more context below.\n"
106
- "------------\n"
107
- "{text}\n"
108
- "------------\n"
109
- "Given the new context, refine the original summary in English"
110
- "If the context isn't useful, return the original summary." )
111
-
112
- refine_prompt = PromptTemplate.from_template(refine_template)
 
 
 
 
 
 
 
 
 
 
 
113
  chain1 = load_summarize_chain(
114
- llm=HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
115
  model_kwargs={"temperature":1, "max_length":10000},
116
  huggingfacehub_api_token=api_token),
117
- chain_type="refine",
118
- question_prompt=prompt,
119
- # refine_prompt=refine_prompt,
120
- return_intermediate_steps=False,
121
  input_key="input_documents",
122
  output_key="output_text",
123
  )
 
124
  return chain1
125
 
126
  # result = chain({"input_documents":split_docs}, return_only_outputs=True)
 
88
  ########## CHAIN 1 norm text
89
 
90
  def chain1():
91
+ # prompt_template = """Please provide a summary of the given study material. Summarize the key concepts, findings, and important details.
92
+ # Pay special attention to any definitions, theories, or conclusions presented in the text.
93
+ # Your summary should be concise yet comprehensive, capturing the main points of the study material.
94
+ # Your job is to write a summary of the document such that every summary of the text is of 2 sentences.
95
+ # here is the content of the section:
96
+ # "{text}"
97
+
98
+ # SUMMARY:"""
99
+ # prompt = PromptTemplate.from_template(prompt_template)
100
+
101
+ # refine_template = (
102
+ # "Your job is to produce a final summary\n"
103
+ # # "We have provided an existing summary up to a certain point: {existing_answer}\n"
104
+ # "We have the opportunity to refine the existing summary"
105
+ # "(only if needed) with some more context below.\n"
106
+ # "------------\n"
107
+ # "{text}\n"
108
+ # "------------\n"
109
+ # "Given the new context, refine the original summary in English"
110
+ # "If the context isn't useful, return the original summary." )
111
+
112
+ # refine_prompt = PromptTemplate.from_template(refine_template)
113
+ # chain1 = load_summarize_chain(
114
+ # llm=HuggingFaceHub(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
115
+ # model_kwargs={"temperature":1, "max_length":10000},
116
+ # huggingfacehub_api_token=api_token),
117
+ # chain_type="refine",
118
+ # question_prompt=prompt,
119
+ # # refine_prompt=refine_prompt,
120
+ # return_intermediate_steps=False,
121
+ # input_key="input_documents",
122
+ # output_key="output_text",
123
+ # )
124
  chain1 = load_summarize_chain(
125
+ llm=HuggingFaceHub(repo_id="sshleifer/distilbart-cnn-12-6",
126
  model_kwargs={"temperature":1, "max_length":10000},
127
  huggingfacehub_api_token=api_token),
128
+ chain_type="stuff",
129
+ # question_prompt=prompt,
130
+ # # refine_prompt=refine_prompt,
131
+ # return_intermediate_steps=False,
132
  input_key="input_documents",
133
  output_key="output_text",
134
  )
135
+
136
  return chain1
137
 
138
  # result = chain({"input_documents":split_docs}, return_only_outputs=True)