Spaces:
Running
Running
File size: 41,510 Bytes
13580fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 |
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT
import numpy as np
import math
import functools
import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter as P
from .transformer import Transformer
from . import BigGAN_layers as layers
from .sync_batchnorm import SynchronizedBatchNorm2d as SyncBatchNorm2d
from util.util import to_device, load_network
from .networks import init_weights
from params import *
# Attention is passed in in the format '32_64' to mean applying an attention
# block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64.
from models.blocks import LinearBlock, Conv2dBlock, ResBlocks, ActFirstResBlock
class Decoder(nn.Module):
def __init__(self, ups=3, n_res=2, dim=512, out_dim=1, res_norm='adain', activ='relu', pad_type='reflect'):
super(Decoder, self).__init__()
self.model = []
self.model += [ResBlocks(n_res, dim, res_norm,
activ, pad_type=pad_type)]
for i in range(ups):
self.model += [nn.Upsample(scale_factor=2),
Conv2dBlock(dim, dim // 2, 5, 1, 2,
norm='in',
activation=activ,
pad_type=pad_type)]
dim //= 2
self.model += [Conv2dBlock(dim, out_dim, 7, 1, 3,
norm='none',
activation='tanh',
pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
def forward(self, x):
y = self.model(x)
return y
def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'):
arch = {}
arch[512] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2, 1]],
'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1, 1]],
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32, 64, 128, 256, 512],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 10)}}
arch[256] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2]],
'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1]],
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32, 64, 128, 256],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 9)}}
arch[128] = {'in_channels': [ch * item for item in [16, 16, 8, 4, 2]],
'out_channels': [ch * item for item in [16, 8, 4, 2, 1]],
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32, 64, 128],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 8)}}
arch[64] = {'in_channels': [ch * item for item in [16, 16, 8, 4]],
'out_channels': [ch * item for item in [16, 8, 4, 2]],
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32, 64],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 7)}}
arch[63] = {'in_channels': [ch * item for item in [16, 16, 8, 4]],
'out_channels': [ch * item for item in [16, 8, 4, 2]],
'upsample': [(2, 2), (2, 2), (2, 2), (2,1)],
'resolution': [8, 16, 32, 64],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 7)},
'kernel1': [3, 3, 3, 3],
'kernel2': [3, 3, 1, 1]
}
arch[32] = {'in_channels': [ch * item for item in [4, 4, 4]],
'out_channels': [ch * item for item in [4, 4, 4]],
'upsample': [(2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)}}
arch[32] = {'in_channels': [ch * item for item in [4, 4, 4]],
'out_channels': [ch * item for item in [4, 4, 4]],
'upsample': [(2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)},
'kernel1': [3, 3, 3],
'kernel2': [3, 3, 1]
}
arch[129] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2, 1]],
'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1, 1]],
'upsample': [(2,2), (2,2), (2,2), (2,2), (2,2), (1,2), (1,2)],
'resolution': [8, 16, 32, 64, 128, 256, 512],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 10)}}
arch[33] = {'in_channels': [ch * item for item in [16, 16, 8, 4, 2]],
'out_channels': [ch * item for item in [16, 8, 4, 2, 1]],
'upsample': [(2,2), (2,2), (2,2), (1,2), (1,2)],
'resolution': [8, 16, 32, 64, 128],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 8)}}
arch[31] = {'in_channels': [ch * item for item in [16, 16, 4, 2]],
'out_channels': [ch * item for item in [16, 4, 2, 1]],
'upsample': [(2,2), (2,2), (2,2), (1,2)],
'resolution': [8, 16, 32, 64],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 7)},
'kernel1':[3, 3, 3, 3],
'kernel2': [3, 1, 1, 1]}
arch[16] = {'in_channels': [ch * item for item in [8, 4, 2]],
'out_channels': [ch * item for item in [4, 2, 1]],
'upsample': [(2,2), (2,2), (2,1)],
'resolution': [8, 16, 16],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)},
'kernel1':[3, 3, 3],
'kernel2': [3, 3, 1]}
arch[17] = {'in_channels': [ch * item for item in [8, 4, 2]],
'out_channels': [ch * item for item in [4, 2, 1]],
'upsample': [(2,2), (2,2), (2,1)],
'resolution': [8, 16, 16],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)},
'kernel1':[3, 3, 3],
'kernel2': [3, 3, 1]}
arch[20] = {'in_channels': [ch * item for item in [8, 4, 2]],
'out_channels': [ch * item for item in [4, 2, 1]],
'upsample': [(2,2), (2,2), (2,1)],
'resolution': [8, 16, 16],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)},
'kernel1':[3, 3, 3],
'kernel2': [3, 1, 1]}
return arch
class Generator(nn.Module):
def __init__(self, G_ch=64, dim_z=128, bottom_width=4, bottom_height=4,resolution=128,
G_kernel_size=3, G_attn='64', n_classes=1000,
num_G_SVs=1, num_G_SV_itrs=1,
G_shared=True, shared_dim=0, no_hier=False,
cross_replica=False, mybn=False,
G_activation=nn.ReLU(inplace=False),
BN_eps=1e-5, SN_eps=1e-12, G_fp16=False,
G_init='ortho', skip_init=False,
G_param='SN', norm_style='bn',gpu_ids=[], bn_linear='embed', input_nc=3,
one_hot=False, first_layer=False, one_hot_k=1,
**kwargs):
super(Generator, self).__init__()
self.name = 'G'
# Use class only in first layer
self.first_layer = first_layer
# gpu-ids
self.gpu_ids = gpu_ids
# Use one hot vector representation for input class
self.one_hot = one_hot
# Use one hot k vector representation for input class if k is larger than 0. If it's 0, simly use the class number and not a k-hot encoding.
self.one_hot_k = one_hot_k
# Channel width mulitplier
self.ch = G_ch
# Dimensionality of the latent space
self.dim_z = dim_z
# The initial width dimensions
self.bottom_width = bottom_width
# The initial height dimension
self.bottom_height = bottom_height
# Resolution of the output
self.resolution = resolution
# Kernel size?
self.kernel_size = G_kernel_size
# Attention?
self.attention = G_attn
# number of classes, for use in categorical conditional generation
self.n_classes = n_classes
# Use shared embeddings?
self.G_shared = G_shared
# Dimensionality of the shared embedding? Unused if not using G_shared
self.shared_dim = shared_dim if shared_dim > 0 else dim_z
# Hierarchical latent space?
self.hier = not no_hier
# Cross replica batchnorm?
self.cross_replica = cross_replica
# Use my batchnorm?
self.mybn = mybn
# nonlinearity for residual blocks
self.activation = G_activation
# Initialization style
self.init = G_init
# Parameterization style
self.G_param = G_param
# Normalization style
self.norm_style = norm_style
# Epsilon for BatchNorm?
self.BN_eps = BN_eps
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# fp16?
self.fp16 = G_fp16
# Architecture dict
self.arch = G_arch(self.ch, self.attention)[resolution]
self.bn_linear = bn_linear
#self.transformer = Transformer(d_model = 2560)
#self.input_proj = nn.Conv2d(512, 2560, kernel_size=1)
self.linear_q = nn.Linear(512,2048*2)
self.DETR = build()
self.DEC = Decoder(res_norm = 'in')
# If using hierarchical latents, adjust z
if self.hier:
# Number of places z slots into
self.num_slots = len(self.arch['in_channels']) + 1
self.z_chunk_size = (self.dim_z // self.num_slots)
# Recalculate latent dimensionality for even splitting into chunks
self.dim_z = self.z_chunk_size * self.num_slots
else:
self.num_slots = 1
self.z_chunk_size = 0
# Which convs, batchnorms, and linear layers to use
if self.G_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
else:
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
self.which_linear = nn.Linear
# We use a non-spectral-normed embedding here regardless;
# For some reason applying SN to G's embedding seems to randomly cripple G
if one_hot:
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
else:
self.which_embedding = nn.Embedding
bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared
else self.which_embedding)
if self.bn_linear=='SN':
bn_linear = functools.partial(self.which_linear, bias=False)
if self.G_shared:
input_size = self.shared_dim + self.z_chunk_size
elif self.hier:
if self.first_layer:
input_size = self.z_chunk_size
else:
input_size = self.n_classes + self.z_chunk_size
self.which_bn = functools.partial(layers.ccbn,
which_linear=bn_linear,
cross_replica=self.cross_replica,
mybn=self.mybn,
input_size=input_size,
norm_style=self.norm_style,
eps=self.BN_eps)
else:
input_size = self.n_classes
self.which_bn = functools.partial(layers.bn,
cross_replica=self.cross_replica,
mybn=self.mybn,
eps=self.BN_eps)
# Prepare model
# If not using shared embeddings, self.shared is just a passthrough
self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared
else layers.identity())
# First linear layer
# The parameters for the first linear layer depend on the different input variations.
if self.first_layer:
if self.one_hot:
self.linear = self.which_linear(self.dim_z // self.num_slots + self.n_classes,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
else:
self.linear = self.which_linear(self.dim_z // self.num_slots + 1,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
if self.one_hot_k==1:
self.linear = self.which_linear((self.dim_z // self.num_slots) * self.n_classes,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
if self.one_hot_k>1:
self.linear = self.which_linear(self.dim_z // self.num_slots + self.n_classes*self.one_hot_k,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
else:
self.linear = self.which_linear(self.dim_z // self.num_slots,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
# while the inner loop is over a given block
self.blocks = []
for index in range(len(self.arch['out_channels'])):
if 'kernel1' in self.arch.keys():
padd1 = 1 if self.arch['kernel1'][index]>1 else 0
padd2 = 1 if self.arch['kernel2'][index]>1 else 0
conv1 = functools.partial(layers.SNConv2d,
kernel_size=self.arch['kernel1'][index], padding=padd1,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
conv2 = functools.partial(layers.SNConv2d,
kernel_size=self.arch['kernel2'][index], padding=padd2,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv1=conv1,
which_conv2=conv2,
which_bn=self.which_bn,
activation=self.activation,
upsample=(functools.partial(F.interpolate,
scale_factor=self.arch['upsample'][index])
if index < len(self.arch['upsample']) else None))]]
else:
self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv1=self.which_conv,
which_conv2=self.which_conv,
which_bn=self.which_bn,
activation=self.activation,
upsample=(functools.partial(F.interpolate, scale_factor=self.arch['upsample'][index])
if index < len(self.arch['upsample']) else None))]]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# output layer: batchnorm-relu-conv.
# Consider using a non-spectral conv here
self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1],
cross_replica=self.cross_replica,
mybn=self.mybn),
self.activation,
self.which_conv(self.arch['out_channels'][-1], input_nc))
# Initialize weights. Optionally skip init for testing.
if not skip_init:
self = init_weights(self, G_init)
# Note on this forward function: we pass in a y vector which has
# already been passed through G.shared to enable easy class-wise
# interpolation later. If we passed in the one-hot and then ran it through
# G.shared in this forward function, it would be harder to handle.
def forward(self, x, y_ind, y):
# If hierarchical, concatenate zs and ys
h_all = self.DETR(x, y_ind)
#h_all = torch.stack([h_all, h_all, h_all])
#h_all_bs = torch.unbind(h_all[-1], 0)
#y_bs = torch.unbind(y_ind, 0)
#h = torch.stack([h_i[y_j] for h_i,y_j in zip(h_all_bs, y_bs)], 0)
h = self.linear_q(h_all)
h = h.contiguous()
# Reshape - when y is not a single class value but rather an array of classes, the reshape is needed to create
# a separate vertical patch for each input.
if self.first_layer:
# correct reshape
h = h.view(h.size(0), h.shape[1]*2, 4, -1)
h = h.permute(0, 3, 2, 1)
else:
h = h.view(h.size(0), -1, self.bottom_width, self.bottom_height)
#for index, blocklist in enumerate(self.blocks):
# Second inner loop in case block has multiple layers
# for block in blocklist:
# h = block(h, ys[index])
#Apply batchnorm-relu-conv-tanh at output
# h = torch.tanh(self.output_layer(h))
h = self.DEC(h)
return h
# Discriminator architecture, same paradigm as G's above
def D_arch(ch=64, attention='64', input_nc=3, ksize='333333', dilation='111111'):
arch = {}
arch[256] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
'downsample': [True] * 6 + [False],
'resolution': [128, 64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 8)}}
arch[128] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
'downsample': [True] * 5 + [False],
'resolution': [64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 8)}}
arch[64] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16]],
'downsample': [True] * 4 + [False],
'resolution': [32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 7)}}
arch[63] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16]],
'downsample': [True] * 4 + [False],
'resolution': [32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 7)}}
arch[32] = {'in_channels': [input_nc] + [item * ch for item in [4, 4, 4]],
'out_channels': [item * ch for item in [4, 4, 4, 4]],
'downsample': [True, True, False, False],
'resolution': [16, 16, 16, 16],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 6)}}
arch[129] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
'downsample': [True] * 6 + [False],
'resolution': [128, 64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 8)}}
arch[33] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
'downsample': [True] * 5 + [False],
'resolution': [64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 10)}}
arch[31] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
'downsample': [True] * 5 + [False],
'resolution': [64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 10)}}
arch[16] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]],
'out_channels': [item * ch for item in [1, 8, 16, 16]],
'downsample': [True] * 3 + [False],
'resolution': [16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 5)}}
arch[17] = {'in_channels': [input_nc] + [ch * item for item in [1, 4]],
'out_channels': [item * ch for item in [1, 4, 8]],
'downsample': [True] * 3,
'resolution': [16, 8, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 5)}}
arch[20] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]],
'out_channels': [item * ch for item in [1, 8, 16, 16]],
'downsample': [True] * 3 + [False],
'resolution': [16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 5)}}
return arch
class Discriminator(nn.Module):
def __init__(self, D_ch=64, D_wide=True, resolution=resolution,
D_kernel_size=3, D_attn='64', n_classes=VOCAB_SIZE,
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
SN_eps=1e-8, output_dim=1, D_mixed_precision=False, D_fp16=False,
D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False, **kwargs):
super(Discriminator, self).__init__()
self.name = 'D'
# gpu_ids
self.gpu_ids = gpu_ids
# one_hot representation
self.one_hot = one_hot
# Width multiplier
self.ch = D_ch
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
self.D_wide = D_wide
# Resolution
self.resolution = resolution
# Kernel size
self.kernel_size = D_kernel_size
# Attention?
self.attention = D_attn
# Number of classes
self.n_classes = n_classes
# Activation
self.activation = D_activation
# Initialization style
self.init = D_init
# Parameterization style
self.D_param = D_param
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# Fp16?
self.fp16 = D_fp16
# Architecture
self.arch = D_arch(self.ch, self.attention, input_nc)[resolution]
# Which convs, batchnorms, and linear layers to use
# No option to turn off SN in D right now
if self.D_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_embedding = functools.partial(layers.SNEmbedding,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
if bn_linear=='SN':
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
else:
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
self.which_linear = nn.Linear
# We use a non-spectral-normed embedding here regardless;
# For some reason applying SN to G's embedding seems to randomly cripple G
self.which_embedding = nn.Embedding
if one_hot:
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
# Prepare model
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
self.blocks = []
for index in range(len(self.arch['out_channels'])):
self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv=self.which_conv,
wide=self.D_wide,
activation=self.activation,
preactivation=(index > 0),
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# Linear output layer. The output dimension is typically 1, but may be
# larger if we're e.g. turning this into a VAE with an inference output
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
# Embedding for projection discrimination
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
# Initialize weights
if not skip_init:
self = init_weights(self, D_init)
def forward(self, x, y=None, **kwargs):
# Stick x into h for cleaner for loops without flow control
h = x
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
# Apply global sum pooling as in SN-GAN
h = torch.sum(self.activation(h), [2, 3])
# Get initial class-unconditional output
out = self.linear(h)
# Get projection of final featureset onto class vectors and add to evidence
if y is not None:
out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)
return out
def return_features(self, x, y=None):
# Stick x into h for cleaner for loops without flow control
h = x
block_output = []
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
block_output.append(h)
# Apply global sum pooling as in SN-GAN
# h = torch.sum(self.activation(h), [2, 3])
return block_output
class WDiscriminator(nn.Module):
def __init__(self, D_ch=64, D_wide=True, resolution=resolution,
D_kernel_size=3, D_attn='64', n_classes=VOCAB_SIZE,
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
SN_eps=1e-8, output_dim=NUM_WRITERS, D_mixed_precision=False, D_fp16=False,
D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False, **kwargs):
super(WDiscriminator, self).__init__()
self.name = 'D'
# gpu_ids
self.gpu_ids = gpu_ids
# one_hot representation
self.one_hot = one_hot
# Width multiplier
self.ch = D_ch
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
self.D_wide = D_wide
# Resolution
self.resolution = resolution
# Kernel size
self.kernel_size = D_kernel_size
# Attention?
self.attention = D_attn
# Number of classes
self.n_classes = n_classes
# Activation
self.activation = D_activation
# Initialization style
self.init = D_init
# Parameterization style
self.D_param = D_param
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# Fp16?
self.fp16 = D_fp16
# Architecture
self.arch = D_arch(self.ch, self.attention, input_nc)[resolution]
# Which convs, batchnorms, and linear layers to use
# No option to turn off SN in D right now
if self.D_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_embedding = functools.partial(layers.SNEmbedding,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
if bn_linear=='SN':
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
else:
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
self.which_linear = nn.Linear
# We use a non-spectral-normed embedding here regardless;
# For some reason applying SN to G's embedding seems to randomly cripple G
self.which_embedding = nn.Embedding
if one_hot:
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
# Prepare model
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
self.blocks = []
for index in range(len(self.arch['out_channels'])):
self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv=self.which_conv,
wide=self.D_wide,
activation=self.activation,
preactivation=(index > 0),
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# Linear output layer. The output dimension is typically 1, but may be
# larger if we're e.g. turning this into a VAE with an inference output
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
# Embedding for projection discrimination
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
self.cross_entropy = nn.CrossEntropyLoss()
# Initialize weights
if not skip_init:
self = init_weights(self, D_init)
def forward(self, x, y=None, **kwargs):
# Stick x into h for cleaner for loops without flow control
h = x
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
# Apply global sum pooling as in SN-GAN
h = torch.sum(self.activation(h), [2, 3])
# Get initial class-unconditional output
out = self.linear(h)
# Get projection of final featureset onto class vectors and add to evidence
#if y is not None:
#out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)
loss = self.cross_entropy(out, y.long())
return loss
def return_features(self, x, y=None):
# Stick x into h for cleaner for loops without flow control
h = x
block_output = []
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
block_output.append(h)
# Apply global sum pooling as in SN-GAN
# h = torch.sum(self.activation(h), [2, 3])
return block_output
class Encoder(Discriminator):
def __init__(self, opt, output_dim, **kwargs):
super(Encoder, self).__init__(**vars(opt))
self.output_layer = nn.Sequential(self.activation,
nn.Conv2d(self.arch['out_channels'][-1], output_dim, kernel_size=(4,2), padding=0, stride=2))
def forward(self, x):
# Stick x into h for cleaner for loops without flow control
h = x
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
out = self.output_layer(h)
return out
class BiDiscriminator(nn.Module):
def __init__(self, opt):
super(BiDiscriminator, self).__init__()
self.infer_img = Encoder(opt, output_dim=opt.nimg_features)
# self.infer_z = nn.Sequential(
# nn.Conv2d(opt.dim_z, 512, 1, stride=1, bias=False),
# nn.LeakyReLU(inplace=True),
# nn.Dropout2d(p=self.dropout),
# nn.Conv2d(512, opt.nz_features, 1, stride=1, bias=False),
# nn.LeakyReLU(inplace=True),
# nn.Dropout2d(p=self.dropout)
# )
self.infer_joint = nn.Sequential(
nn.Conv2d(opt.dim_z+opt.nimg_features, 1024, 1, stride=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 1024, 1, stride=1, bias=True),
nn.ReLU(inplace=True)
)
self.final = nn.Conv2d(1024, 1, 1, stride=1, bias=True)
def forward(self, x, z, **kwargs):
output_x = self.infer_img(x)
# output_z = self.infer_z(z)
if len(z.shape)==2:
z = z.unsqueeze(2).unsqueeze(2).repeat((1,1,1,output_x.shape[3]))
output_features = self.infer_joint(torch.cat([output_x, z], dim=1))
output = self.final(output_features)
return output
# Parallelized G_D to minimize cross-gpu communication
# Without this, Generator outputs would get all-gathered and then rebroadcast.
class G_D(nn.Module):
def __init__(self, G, D):
super(G_D, self).__init__()
self.G = G
self.D = D
def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False,
split_D=False):
# If training G, enable grad tape
with torch.set_grad_enabled(train_G):
# Get Generator output given noise
G_z = self.G(z, self.G.shared(gy))
# Cast as necessary
if self.G.fp16 and not self.D.fp16:
G_z = G_z.float()
if self.D.fp16 and not self.G.fp16:
G_z = G_z.half()
# Split_D means to run D once with real data and once with fake,
# rather than concatenating along the batch dimension.
if split_D:
D_fake = self.D(G_z, gy)
if x is not None:
D_real = self.D(x, dy)
return D_fake, D_real
else:
if return_G_z:
return D_fake, G_z
else:
return D_fake
# If real data is provided, concatenate it with the Generator's output
# along the batch dimension for improved efficiency.
else:
D_input = torch.cat([G_z, x], 0) if x is not None else G_z
D_class = torch.cat([gy, dy], 0) if dy is not None else gy
# Get Discriminator output
D_out = self.D(D_input, D_class)
if x is not None:
return torch.split(D_out, [G_z.shape[0], x.shape[0]]) # D_fake, D_real
else:
if return_G_z:
return D_out, G_z
else:
return D_out
|