Spaces:
Running
Running
import argparse | |
from collections import namedtuple | |
import numpy as np | |
import torch | |
import cv2,os | |
import torch | |
import torch.nn.functional as F | |
from collections import defaultdict | |
from sklearn.cluster import DBSCAN | |
""" | |
taken from https://github.com/githubharald/WordDetectorNN | |
Download the models from https://www.dropbox.com/s/mqhco2q67ovpfjq/model.zip?dl=1 and pass the path to word_segment(.) as argument. | |
""" | |
from typing import Type, Any, Callable, Union, List, Optional | |
import torch.nn as nn | |
from torch import Tensor | |
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d: | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=dilation, groups=groups, bias=False, dilation=dilation) | |
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: | |
"""1x1 convolution""" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) | |
class BasicBlock(nn.Module): | |
expansion: int = 1 | |
def __init__( | |
self, | |
inplanes: int, | |
planes: int, | |
stride: int = 1, | |
downsample: Optional[nn.Module] = None, | |
groups: int = 1, | |
base_width: int = 64, | |
dilation: int = 1, | |
norm_layer: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(BasicBlock, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
if groups != 1 or base_width != 64: | |
raise ValueError('BasicBlock only supports groups=1 and base_width=64') | |
if dilation > 1: | |
raise NotImplementedError("Dilation > 1 not supported in BasicBlock") | |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = norm_layer(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = norm_layer(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) | |
# while original implementation places the stride at the first 1x1 convolution(self.conv1) | |
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. | |
# This variant is also known as ResNet V1.5 and improves accuracy according to | |
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. | |
expansion: int = 4 | |
def __init__( | |
self, | |
inplanes: int, | |
planes: int, | |
stride: int = 1, | |
downsample: Optional[nn.Module] = None, | |
groups: int = 1, | |
base_width: int = 64, | |
dilation: int = 1, | |
norm_layer: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(Bottleneck, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
width = int(planes * (base_width / 64.)) * groups | |
# Both self.conv2 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv1x1(inplanes, width) | |
self.bn1 = norm_layer(width) | |
self.conv2 = conv3x3(width, width, stride, groups, dilation) | |
self.bn2 = norm_layer(width) | |
self.conv3 = conv1x1(width, planes * self.expansion) | |
self.bn3 = norm_layer(planes * self.expansion) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x: Tensor) -> Tensor: | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__( | |
self, | |
block: Type[Union[BasicBlock, Bottleneck]], | |
layers: List[int], | |
num_classes: int = 1000, | |
zero_init_residual: bool = False, | |
groups: int = 1, | |
width_per_group: int = 64, | |
replace_stride_with_dilation: Optional[List[bool]] = None, | |
norm_layer: Optional[Callable[..., nn.Module]] = None | |
) -> None: | |
super(ResNet, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
self._norm_layer = norm_layer | |
self.inplanes = 64 | |
self.dilation = 1 | |
if replace_stride_with_dilation is None: | |
# each element in the tuple indicates if we should replace | |
# the 2x2 stride with a dilated convolution instead | |
replace_stride_with_dilation = [False, False, False] | |
if len(replace_stride_with_dilation) != 3: | |
raise ValueError("replace_stride_with_dilation should be None " | |
"or a 3-element tuple, got {}".format(replace_stride_with_dilation)) | |
self.groups = groups | |
self.base_width = width_per_group | |
self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=7, stride=2, padding=3, | |
bias=False) | |
self.bn1 = norm_layer(self.inplanes) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, | |
dilate=replace_stride_with_dilation[0]) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, | |
dilate=replace_stride_with_dilation[1]) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, | |
dilate=replace_stride_with_dilation[2]) | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.fc = nn.Linear(512 * block.expansion, num_classes) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
# Zero-initialize the last BN in each residual branch, | |
# so that the residual branch starts with zeros, and each residual block behaves like an identity. | |
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 | |
if zero_init_residual: | |
for m in self.modules(): | |
if isinstance(m, Bottleneck): | |
nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] | |
elif isinstance(m, BasicBlock): | |
nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] | |
def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, | |
stride: int = 1, dilate: bool = False) -> nn.Sequential: | |
norm_layer = self._norm_layer | |
downsample = None | |
previous_dilation = self.dilation | |
if dilate: | |
self.dilation *= stride | |
stride = 1 | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
conv1x1(self.inplanes, planes * block.expansion, stride), | |
norm_layer(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample, self.groups, | |
self.base_width, previous_dilation, norm_layer)) | |
self.inplanes = planes * block.expansion | |
for _ in range(1, blocks): | |
layers.append(block(self.inplanes, planes, groups=self.groups, | |
base_width=self.base_width, dilation=self.dilation, | |
norm_layer=norm_layer)) | |
return nn.Sequential(*layers) | |
def _forward_impl(self, x: Tensor) -> Tensor: | |
# See note [TorchScript super()] | |
x = self.conv1(x) | |
x = self.bn1(x) | |
out1 = self.relu(x) | |
x = self.maxpool(out1) | |
out2 = self.layer1(x) | |
out3 = self.layer2(out2) | |
out4 = self.layer3(out3) | |
out5 = self.layer4(out4) | |
return out5, out4, out3, out2, out1 | |
def forward(self, x: Tensor) -> Tensor: | |
return self._forward_impl(x) | |
def _resnet( | |
arch: str, | |
block: Type[Union[BasicBlock, Bottleneck]], | |
layers: List[int], | |
pretrained: bool, | |
progress: bool, | |
**kwargs: Any | |
) -> ResNet: | |
model = ResNet(block, layers, **kwargs) | |
return model | |
def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: | |
r"""ResNet-18 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, | |
**kwargs) | |
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: | |
r"""ResNet-34 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, | |
**kwargs) | |
def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: | |
r"""ResNet-50 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, | |
**kwargs) | |
def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: | |
r"""ResNet-101 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, | |
**kwargs) | |
def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: | |
r"""ResNet-152 model from | |
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, | |
**kwargs) | |
def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: | |
r"""ResNeXt-50 32x4d model from | |
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['groups'] = 32 | |
kwargs['width_per_group'] = 4 | |
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], | |
pretrained, progress, **kwargs) | |
def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: | |
r"""ResNeXt-101 32x8d model from | |
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['groups'] = 32 | |
kwargs['width_per_group'] = 8 | |
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], | |
pretrained, progress, **kwargs) | |
def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: | |
r"""Wide ResNet-50-2 model from | |
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_. | |
The model is the same as ResNet except for the bottleneck number of channels | |
which is twice larger in every block. The number of channels in outer 1x1 | |
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 | |
channels, and in Wide ResNet-50-2 has 2048-1024-2048. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['width_per_group'] = 64 * 2 | |
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], | |
pretrained, progress, **kwargs) | |
def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet: | |
r"""Wide ResNet-101-2 model from | |
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_. | |
The model is the same as ResNet except for the bottleneck number of channels | |
which is twice larger in every block. The number of channels in outer 1x1 | |
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 | |
channels, and in Wide ResNet-50-2 has 2048-1024-2048. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
progress (bool): If True, displays a progress bar of the download to stderr | |
""" | |
kwargs['width_per_group'] = 64 * 2 | |
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], | |
pretrained, progress, **kwargs) | |
def compute_iou(ra, rb): | |
"""intersection over union of two axis aligned rectangles ra and rb""" | |
if ra.xmax < rb.xmin or rb.xmax < ra.xmin or ra.ymax < rb.ymin or rb.ymax < ra.ymin: | |
return 0 | |
l = max(ra.xmin, rb.xmin) | |
r = min(ra.xmax, rb.xmax) | |
t = max(ra.ymin, rb.ymin) | |
b = min(ra.ymax, rb.ymax) | |
intersection = (r - l) * (b - t) | |
union = ra.area() + rb.area() - intersection | |
iou = intersection / union | |
return iou | |
def compute_dist_mat(aabbs): | |
"""Jaccard distance matrix of all pairs of aabbs""" | |
num_aabbs = len(aabbs) | |
dists = np.zeros((num_aabbs, num_aabbs)) | |
for i in range(num_aabbs): | |
for j in range(num_aabbs): | |
if j > i: | |
break | |
dists[i, j] = dists[j, i] = 1 - compute_iou(aabbs[i], aabbs[j]) | |
return dists | |
def cluster_aabbs(aabbs): | |
"""cluster aabbs using DBSCAN and the Jaccard distance between bounding boxes""" | |
if len(aabbs) < 2: | |
return aabbs | |
dists = compute_dist_mat(aabbs) | |
clustering = DBSCAN(eps=0.7, min_samples=3, metric='precomputed').fit(dists) | |
clusters = defaultdict(list) | |
for i, c in enumerate(clustering.labels_): | |
if c == -1: | |
continue | |
clusters[c].append(aabbs[i]) | |
res_aabbs = [] | |
for curr_cluster in clusters.values(): | |
xmin = np.median([aabb.xmin for aabb in curr_cluster]) | |
xmax = np.median([aabb.xmax for aabb in curr_cluster]) | |
ymin = np.median([aabb.ymin for aabb in curr_cluster]) | |
ymax = np.median([aabb.ymax for aabb in curr_cluster]) | |
res_aabbs.append(AABB(xmin, xmax, ymin, ymax)) | |
return res_aabbs | |
class AABB: | |
"""axis aligned bounding box""" | |
def __init__(self, xmin, xmax, ymin, ymax): | |
self.xmin = xmin | |
self.xmax = xmax | |
self.ymin = ymin | |
self.ymax = ymax | |
def scale(self, fx, fy): | |
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) | |
new.xmin = fx * new.xmin | |
new.xmax = fx * new.xmax | |
new.ymin = fy * new.ymin | |
new.ymax = fy * new.ymax | |
return new | |
def scale_around_center(self, fx, fy): | |
cx = (self.xmin + self.xmax) / 2 | |
cy = (self.ymin + self.ymax) / 2 | |
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) | |
new.xmin = cx - fx * (cx - self.xmin) | |
new.xmax = cx + fx * (self.xmax - cx) | |
new.ymin = cy - fy * (cy - self.ymin) | |
new.ymax = cy + fy * (self.ymax - cy) | |
return new | |
def translate(self, tx, ty): | |
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) | |
new.xmin = new.xmin + tx | |
new.xmax = new.xmax + tx | |
new.ymin = new.ymin + ty | |
new.ymax = new.ymax + ty | |
return new | |
def as_type(self, t): | |
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) | |
new.xmin = t(new.xmin) | |
new.xmax = t(new.xmax) | |
new.ymin = t(new.ymin) | |
new.ymax = t(new.ymax) | |
return new | |
def enlarge_to_int_grid(self): | |
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) | |
new.xmin = np.floor(new.xmin) | |
new.xmax = np.ceil(new.xmax) | |
new.ymin = np.floor(new.ymin) | |
new.ymax = np.ceil(new.ymax) | |
return new | |
def clip(self, clip_aabb): | |
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax) | |
new.xmin = min(max(new.xmin, clip_aabb.xmin), clip_aabb.xmax) | |
new.xmax = max(min(new.xmax, clip_aabb.xmax), clip_aabb.xmin) | |
new.ymin = min(max(new.ymin, clip_aabb.ymin), clip_aabb.ymax) | |
new.ymax = max(min(new.ymax, clip_aabb.ymax), clip_aabb.ymin) | |
return new | |
def area(self): | |
return (self.xmax - self.xmin) * (self.ymax - self.ymin) | |
def __str__(self): | |
return f'AABB(xmin={self.xmin},xmax={self.xmax},ymin={self.ymin},ymax={self.ymax})' | |
def __repr__(self): | |
return str(self) | |
class MapOrdering: | |
"""order of the maps encoding the aabbs around the words""" | |
SEG_WORD = 0 | |
SEG_SURROUNDING = 1 | |
SEG_BACKGROUND = 2 | |
GEO_TOP = 3 | |
GEO_BOTTOM = 4 | |
GEO_LEFT = 5 | |
GEO_RIGHT = 6 | |
NUM_MAPS = 7 | |
def encode(shape, gt, f=1.0): | |
gt_map = np.zeros((MapOrdering.NUM_MAPS,) + shape) | |
for aabb in gt: | |
aabb = aabb.scale(f, f) | |
# segmentation map | |
aabb_clip = AABB(0, shape[0] - 1, 0, shape[1] - 1) | |
aabb_word = aabb.scale_around_center(0.5, 0.5).as_type(int).clip(aabb_clip) | |
aabb_sur = aabb.as_type(int).clip(aabb_clip) | |
gt_map[MapOrdering.SEG_SURROUNDING, aabb_sur.ymin:aabb_sur.ymax + 1, aabb_sur.xmin:aabb_sur.xmax + 1] = 1 | |
gt_map[MapOrdering.SEG_SURROUNDING, aabb_word.ymin:aabb_word.ymax + 1, aabb_word.xmin:aabb_word.xmax + 1] = 0 | |
gt_map[MapOrdering.SEG_WORD, aabb_word.ymin:aabb_word.ymax + 1, aabb_word.xmin:aabb_word.xmax + 1] = 1 | |
# geometry map TODO vectorize | |
for x in range(aabb_word.xmin, aabb_word.xmax + 1): | |
for y in range(aabb_word.ymin, aabb_word.ymax + 1): | |
gt_map[MapOrdering.GEO_TOP, y, x] = y - aabb.ymin | |
gt_map[MapOrdering.GEO_BOTTOM, y, x] = aabb.ymax - y | |
gt_map[MapOrdering.GEO_LEFT, y, x] = x - aabb.xmin | |
gt_map[MapOrdering.GEO_RIGHT, y, x] = aabb.xmax - x | |
gt_map[MapOrdering.SEG_BACKGROUND] = np.clip(1 - gt_map[MapOrdering.SEG_WORD] - gt_map[MapOrdering.SEG_SURROUNDING], | |
0, 1) | |
return gt_map | |
def subsample(idx, max_num): | |
"""restrict fg indices to a maximum number""" | |
f = len(idx[0]) / max_num | |
if f > 1: | |
a = np.asarray([idx[0][int(j * f)] for j in range(max_num)], np.int64) | |
b = np.asarray([idx[1][int(j * f)] for j in range(max_num)], np.int64) | |
idx = (a, b) | |
return idx | |
def fg_by_threshold(thres, max_num=None): | |
"""all pixels above threshold are fg pixels, optionally limited to a maximum number""" | |
def func(seg_map): | |
idx = np.where(seg_map > thres) | |
if max_num is not None: | |
idx = subsample(idx, max_num) | |
return idx | |
return func | |
def fg_by_cc(thres, max_num): | |
"""take a maximum number of pixels per connected component, but at least 3 (->DBSCAN minPts)""" | |
def func(seg_map): | |
seg_mask = (seg_map > thres).astype(np.uint8) | |
num_labels, label_img = cv2.connectedComponents(seg_mask, connectivity=4) | |
max_num_per_cc = max(max_num // (num_labels + 1), 3) # at least 3 because of DBSCAN clustering | |
all_idx = [np.empty(0, np.int64), np.empty(0, np.int64)] | |
for curr_label in range(1, num_labels): | |
curr_idx = np.where(label_img == curr_label) | |
curr_idx = subsample(curr_idx, max_num_per_cc) | |
all_idx[0] = np.append(all_idx[0], curr_idx[0]) | |
all_idx[1] = np.append(all_idx[1], curr_idx[1]) | |
return tuple(all_idx) | |
return func | |
def decode(pred_map, comp_fg=fg_by_threshold(0.5), f=1): | |
idx = comp_fg(pred_map[MapOrdering.SEG_WORD]) | |
pred_map_masked = pred_map[..., idx[0], idx[1]] | |
aabbs = [] | |
for yc, xc, pred in zip(idx[0], idx[1], pred_map_masked.T): | |
t = pred[MapOrdering.GEO_TOP] | |
b = pred[MapOrdering.GEO_BOTTOM] | |
l = pred[MapOrdering.GEO_LEFT] | |
r = pred[MapOrdering.GEO_RIGHT] | |
aabb = AABB(xc - l, xc + r, yc - t, yc + b) | |
aabbs.append(aabb.scale(f, f)) | |
return aabbs | |
def main(): | |
import matplotlib.pyplot as plt | |
aabbs_in = [AABB(10, 30, 30, 60)] | |
encoded = encode((50, 50), aabbs_in, f=0.5) | |
aabbs_out = decode(encoded, f=2) | |
print(aabbs_out[0]) | |
plt.subplot(151) | |
plt.imshow(encoded[MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1].transpose(1, 2, 0)) | |
plt.subplot(152) | |
plt.imshow(encoded[MapOrdering.GEO_TOP]) | |
plt.subplot(153) | |
plt.imshow(encoded[MapOrdering.GEO_BOTTOM]) | |
plt.subplot(154) | |
plt.imshow(encoded[MapOrdering.GEO_LEFT]) | |
plt.subplot(155) | |
plt.imshow(encoded[MapOrdering.GEO_RIGHT]) | |
plt.show() | |
def compute_scale_down(input_size, output_size): | |
"""compute scale down factor of neural network, given input and output size""" | |
return output_size[0] / input_size[0] | |
def prob_true(p): | |
"""return True with probability p""" | |
return np.random.random() < p | |
class UpscaleAndConcatLayer(torch.nn.Module): | |
""" | |
take small map with cx channels | |
upscale to size of large map (s*s) | |
concat large map with cy channels and upscaled small map | |
apply conv and output map with cz channels | |
""" | |
def __init__(self, cx, cy, cz): | |
super(UpscaleAndConcatLayer, self).__init__() | |
self.conv = torch.nn.Conv2d(cx + cy, cz, 3, padding=1) | |
def forward(self, x, y, s): | |
x = F.interpolate(x, s) | |
z = torch.cat((x, y), 1) | |
z = F.relu(self.conv(z)) | |
return z | |
class WordDetectorNet(torch.nn.Module): | |
# fixed sizes for training | |
input_size = (448, 448) | |
output_size = (224, 224) | |
scale_down = compute_scale_down(input_size, output_size) | |
def __init__(self): | |
super(WordDetectorNet, self).__init__() | |
self.backbone = resnet18() | |
self.up1 = UpscaleAndConcatLayer(512, 256, 256) # input//16 | |
self.up2 = UpscaleAndConcatLayer(256, 128, 128) # input//8 | |
self.up3 = UpscaleAndConcatLayer(128, 64, 64) # input//4 | |
self.up4 = UpscaleAndConcatLayer(64, 64, 32) # input//2 | |
self.conv1 = torch.nn.Conv2d(32, MapOrdering.NUM_MAPS, 3, 1, padding=1) | |
def scale_shape(s, f): | |
assert s[0] % f == 0 and s[1] % f == 0 | |
return s[0] // f, s[1] // f | |
def output_activation(self, x, apply_softmax): | |
if apply_softmax: | |
seg = torch.softmax(x[:, MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1], dim=1) | |
else: | |
seg = x[:, MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1] | |
geo = torch.sigmoid(x[:, MapOrdering.GEO_TOP:]) * self.input_size[0] | |
y = torch.cat([seg, geo], dim=1) | |
return y | |
def forward(self, x, apply_softmax=False): | |
# x: BxCxHxW | |
# eval backbone with 448px: bb1: 224px, bb2: 112px, bb3: 56px, bb4: 28px, bb5: 14px | |
s = x.shape[2:] | |
bb5, bb4, bb3, bb2, bb1 = self.backbone(x) | |
x = self.up1(bb5, bb4, self.scale_shape(s, 16)) | |
x = self.up2(x, bb3, self.scale_shape(s, 8)) | |
x = self.up3(x, bb2, self.scale_shape(s, 4)) | |
x = self.up4(x, bb1, self.scale_shape(s, 2)) | |
x = self.conv1(x) | |
return self.output_activation(x, apply_softmax) | |
def ceil32(val): | |
if val % 32 == 0: | |
return val | |
val = (val // 32 + 1) * 32 | |
return val | |
def word_segment(path, output_folder, model_path): | |
os.makedirs(output_folder, exist_ok = True) | |
max_side_len = 5000 | |
thres = 0.5 | |
max_aabbs = 1000 | |
orig = cv2.imread(path, cv2.IMREAD_GRAYSCALE) | |
net = WordDetectorNet() | |
net.load_state_dict(torch.load(model_path, map_location='cuda')) | |
net.eval() | |
net.cuda() | |
f = min(max_side_len / orig.shape[0], max_side_len / orig.shape[1]) | |
if f < 1: | |
orig = cv2.resize(orig, dsize=None, fx=f, fy=f) | |
img = np.ones((ceil32(orig.shape[0]), ceil32(orig.shape[1])), np.uint8) * 255 | |
img[:orig.shape[0], :orig.shape[1]] = orig | |
img = (img / 255 - 0.5).astype(np.float32) | |
imgs = img[None, None, ...] | |
imgs = torch.from_numpy(imgs).cuda() | |
with torch.no_grad(): | |
y = net(imgs, apply_softmax=True) | |
y_np = y.to('cpu').numpy() | |
scale_up = 1 / compute_scale_down(WordDetectorNet.input_size, WordDetectorNet.output_size) | |
img_np = imgs[0, 0].to('cpu').numpy() | |
pred_map = y_np[0] | |
aabbs = decode(pred_map, comp_fg=fg_by_cc(thres, max_aabbs), f=scale_up) | |
h, w = img_np.shape | |
aabbs = [aabb.clip(AABB(0, w - 1, 0, h - 1)) for aabb in aabbs] # bounding box must be inside img | |
clustered_aabbs = cluster_aabbs(aabbs) | |
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE) | |
for idx,bb in enumerate(clustered_aabbs): | |
bb1 = bb | |
im_i = (img_np[int(bb1.ymin):int(bb1.ymax),int(bb1.xmin):int(bb1.xmax)]+0.5)*255 | |
cv2.imwrite(f'{output_folder}/im_{idx}.png',im_i) | |