Spaces:
Runtime error
Runtime error
import gradio as gr | |
from PIL import Image | |
from transformers import pipeline | |
import scipy.io.wavfile as wavfile | |
import numpy as np | |
# import torch | |
# device = "cuda" if torch.cuda.is_available else "cpu" | |
# model_path = "C:/Users/ankitdwivedi/OneDrive - Adobe/Desktop/NLP Projects/Video to Text Summarization/Model/models--Salesforce--blip-image-captioning-large/snapshots/2227ac38c9f16105cb0412e7cab4759978a8fd90" | |
# caption_image = pipeline("image-to-text", model=model_path) | |
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") | |
# tts_model_path = "C:/Users/ankitdwivedi/OneDrive - Adobe/Desktop/NLP Projects/Video to Text Summarization/Model/models--kakao-enterprise--vits-ljs/snapshots/3bcb8321394f671bd948ebf0d086d694dda95464" | |
# Narrator = pipeline("text-to-speech", model=tts_model_path) | |
Narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") | |
def generate_audio(text): | |
Narrated_Text = Narrator(text) | |
audio_data = np.array(Narrated_Text["audio"][0]) | |
sampling_rate = Narrated_Text["sampling_rate"] | |
wavfile.write("generated_audio.wav", rate=sampling_rate, data=audio_data) | |
return "generated_audio.wav" | |
def caption_my_image(pil_image): | |
semantics = caption_image(images=pil_image)[0]["generated_text"] | |
return generate_audio(semantics) | |
demo = gr.Interface(fn=caption_my_image, | |
inputs=[gr.Image(label="Select Image",type="pil")], | |
outputs=[gr.Audio(label="Generated_Audio")], | |
title="Project 8: Audio Caption Image ", | |
description="THIS APPLICATION WILL BE USED TO provide Audio caption for the Image") | |
demo.launch() |