Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import torch
|
|
|
2 |
import torch.nn as nn
|
3 |
-
from transformers import
|
4 |
from PIL import Image
|
5 |
import gradio as gr
|
6 |
|
@@ -32,13 +33,13 @@ class VisionLanguageModel(nn.Module):
|
|
32 |
logits = self.classifier(combined_features)
|
33 |
return logits
|
34 |
|
35 |
-
# Load the model checkpoint
|
36 |
model = VisionLanguageModel()
|
37 |
-
model.load_state_dict(torch.load('best_model.pth', map_location=torch.device('cpu')))
|
38 |
model.eval()
|
39 |
|
40 |
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
41 |
-
feature_extractor =
|
42 |
|
43 |
def predict(image, text_input):
|
44 |
# Preprocess the image
|
@@ -64,12 +65,12 @@ def predict(image, text_input):
|
|
64 |
_, prediction = torch.max(outputs, dim=1)
|
65 |
return "Malignant" if prediction.item() == 1 else "Benign"
|
66 |
|
67 |
-
# Define Gradio interface
|
68 |
iface = gr.Interface(
|
69 |
fn=predict,
|
70 |
inputs=[
|
71 |
-
gr.
|
72 |
-
gr.
|
73 |
],
|
74 |
outputs="text",
|
75 |
title="Skin Lesion Classification Demo",
|
@@ -77,3 +78,4 @@ iface = gr.Interface(
|
|
77 |
)
|
78 |
|
79 |
iface.launch()
|
|
|
|
1 |
import torch
|
2 |
+
import torch
|
3 |
import torch.nn as nn
|
4 |
+
from transformers import ViTImageProcessor, ViTModel, BertTokenizerFast, BertModel
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
7 |
|
|
|
33 |
logits = self.classifier(combined_features)
|
34 |
return logits
|
35 |
|
36 |
+
# Load the model checkpoint with safer loading
|
37 |
model = VisionLanguageModel()
|
38 |
+
model.load_state_dict(torch.load('best_model.pth', map_location=torch.device('cpu'), weights_only=True))
|
39 |
model.eval()
|
40 |
|
41 |
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
42 |
+
feature_extractor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224-in21k')
|
43 |
|
44 |
def predict(image, text_input):
|
45 |
# Preprocess the image
|
|
|
65 |
_, prediction = torch.max(outputs, dim=1)
|
66 |
return "Malignant" if prediction.item() == 1 else "Benign"
|
67 |
|
68 |
+
# Define Gradio interface with updated component syntax
|
69 |
iface = gr.Interface(
|
70 |
fn=predict,
|
71 |
inputs=[
|
72 |
+
gr.Image(type="pil", label="Upload Skin Lesion Image"),
|
73 |
+
gr.Textbox(label="Clinical Information (e.g., patient age, symptoms)")
|
74 |
],
|
75 |
outputs="text",
|
76 |
title="Skin Lesion Classification Demo",
|
|
|
78 |
)
|
79 |
|
80 |
iface.launch()
|
81 |
+
|