Spaces:
Running
on
A10G
Running
on
A10G
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from diffusers.models.activations import get_activation | |
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings | |
from diffusers.models.lora import LoRACompatibleLinear | |
from .attention_processor import Attention | |
import math | |
class GatedSelfAttentionDense(nn.Module): | |
def __init__(self, query_dim, context_dim, n_heads, d_head): | |
super().__init__() | |
# we need a linear projection since we need cat visual feature and obj feature | |
self.linear = nn.Linear(context_dim, query_dim) | |
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head) | |
self.ff = FeedForward(query_dim, activation_fn="geglu") | |
self.norm1 = nn.LayerNorm(query_dim) | |
self.norm2 = nn.LayerNorm(query_dim) | |
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0))) | |
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0))) | |
self.enabled = True | |
def forward(self, x, objs): | |
if not self.enabled: | |
return x | |
n_visual = x.shape[1] | |
objs = self.linear(objs) | |
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :] | |
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x)) | |
return x | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
norm_type: str = "layer_norm", | |
final_dropout: bool = False, | |
attention_type: str = "default", | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" | |
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" | |
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: | |
raise ValueError( | |
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" | |
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." | |
) | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
if self.use_ada_layer_norm: | |
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) | |
elif self.use_ada_layer_norm_zero: | |
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) | |
else: | |
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block. | |
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during | |
# the second cross attention block. | |
self.norm2 = ( | |
AdaLayerNorm(dim, num_embeds_ada_norm) | |
if self.use_ada_layer_norm | |
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
) | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=cross_attention_dim if not double_self_attention else None, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
) # is self-attn if encoder_hidden_states is none | |
else: | |
self.norm2 = None | |
self.attn2 = None | |
# 3. Feed-forward | |
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) | |
# 4. Fuser | |
if attention_type == "gated" or attention_type == "gated-text-image": | |
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
**kwargs, | |
): | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
if attention_mask is not None and not isinstance(attention_mask, list): | |
if attention_mask is not None and hidden_states.shape[1] != attention_mask.shape[-1]: | |
tmp = attention_mask.clone() | |
scale_factor = int(math.sqrt(attention_mask.shape[-1] // hidden_states.shape[1])) | |
try: | |
tmp = tmp.reshape(tmp.shape[0], 40, 72) | |
except: | |
try: | |
tmp = tmp.reshape(tmp.shape[0], 32, 32) # MSR-VTT | |
except: | |
tmp = tmp.reshape(tmp.shape[0], 96, 96) | |
tmp = tmp[:, ::scale_factor, ::scale_factor] | |
tmp = tmp.reshape(tmp.shape[0], 1, -1) | |
attention_mask = tmp | |
if attention_mask is not None: | |
tmp = attention_mask.clone() | |
tmp = tmp.view(tmp.shape[0], -1,1)/(-10000) | |
tmp = (1-tmp) | |
orig_attn_mask = attention_mask.clone() | |
else: | |
# tmp = 0 | |
tmp =1 | |
orig_attn_mask = None | |
if attention_mask is not None and 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True: | |
# We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0. | |
attention_mask_2d = attention_mask + attention_mask.permute(0,2,1) | |
# Get it back to original range. This step is optional tbh | |
attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attention_mask.dtype) | |
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True: | |
tmp_attention = torch.where(attention_mask < 0., 0., -10000.) # allow background | |
tmp_attention = tmp_attention + tmp_attention.permute(0,2,1) | |
tmp_attention = torch.where(tmp_attention < 0., -10000, 0) | |
attention_mask_2d = attention_mask_2d * tmp_attention | |
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask.dtype) | |
attention_mask = attention_mask_2d | |
# Multiple objects | |
elif attention_mask is not None and isinstance(attention_mask, list): | |
if hidden_states.shape[1] != attention_mask[0].shape[-1]: | |
new_attention_mask = [] | |
for attn_mask in attention_mask: | |
tmp = attn_mask.clone() | |
scale_factor = int(math.sqrt(attn_mask.shape[-1] // hidden_states.shape[1])) | |
try: | |
tmp = tmp.reshape(tmp.shape[0], 40, 72) | |
except: | |
tmp = tmp.reshape(tmp.shape[0], 32, 32) | |
tmp = tmp[:, ::scale_factor, ::scale_factor] | |
tmp = tmp.reshape(tmp.shape[0], 1, -1) | |
new_attention_mask.append(tmp) | |
attention_mask = new_attention_mask | |
orig_attn_mask = [] | |
for attn_mask in attention_mask: | |
tmp = attn_mask.clone() | |
tmp = tmp.view(tmp.shape[0], -1,1)/(-10000) | |
tmp = (1-tmp) | |
orig_attn_mask.append(attn_mask.clone()) | |
if 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True: | |
# We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0. | |
attn_mask_2d = [] | |
for attn_mask in attention_mask: | |
attention_mask_2d = attn_mask + attn_mask.permute(0,2,1) | |
# Get it back to original range. This step is optional tbh | |
attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attn_mask.dtype) | |
attn_mask_2d.append(attention_mask_2d) | |
attention_mask_2d = torch.prod(torch.stack(attn_mask_2d, dim=0), dim=0) | |
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attn_mask.dtype) | |
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True: | |
tmp_attention = torch.where(torch.prod(torch.stack(attention_mask,dim=0),dim=0).abs() < 1., -10000., 0.) # Check this well | |
tmp_attention = tmp_attention + tmp_attention.permute(0,2,1) | |
tmp_attention = torch.where(tmp_attention < 0., -10000, 0) | |
attention_mask_2d = attention_mask_2d * tmp_attention | |
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask_2d.dtype) | |
attention_mask = attention_mask_2d | |
else: | |
tmp = 1 | |
orig_attn_mask = None | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
# 1. Retrieve lora scale. | |
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0 | |
# 2. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
# breakpoint() | |
## self-attention amongst fg | |
attn_output = self.attn1( | |
norm_hidden_states, # + tmp, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
if attention_mask is not None: | |
tmp = 1-tmp | |
# 2.5 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 2.5 ends | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states*tmp, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*tmp) | |
) | |
if encoder_attention_mask is None: | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
if encoder_attention_mask is not None: # Encoder attention mask is not None | |
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True: | |
if not isinstance(orig_attn_mask, list): | |
orig_attn_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype).to(orig_attn_mask.device) | |
encoder_attention_mask_2d = encoder_attention_mask + orig_attn_mask.permute(0,2,1) | |
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d < 0., -10000, 0).type(encoder_attention_mask.dtype) | |
inverted_encoder_attention_mask = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype) | |
inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token | |
inverted_orig_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype) | |
inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1) | |
encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d | |
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask.dtype) | |
encoder_attention_mask = encoder_attention_mask_2d | |
else: | |
orig_attn_mask = [torch.where(orig_attn_mask_ < 0., 0., -10000.).type(orig_attn_mask_.dtype).to(orig_attn_mask_.device) for orig_attn_mask_ in orig_attn_mask] | |
encoder_attention_mask_2d = [encoder_attention_mask_ + orig_attn_mask_.permute(0,2,1) for encoder_attention_mask_, orig_attn_mask_ in zip(encoder_attention_mask, orig_attn_mask)] | |
encoder_attention_mask_2d = [torch.where(encoder_attention_mask_2d_ < 0., -10000, 0).type(encoder_attention_mask_2d_.dtype) for encoder_attention_mask_2d_ in encoder_attention_mask_2d] | |
inverted_encoder_attention_mask = torch.where(torch.sum(torch.stack(encoder_attention_mask, dim=0),dim=0) < 0., 0., -10000.).type(encoder_attention_mask[0].dtype) | |
inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token | |
inverted_orig_mask = torch.where(torch.sum(torch.stack(orig_attn_mask,dim=0),dim=0) < 0., 0., -10000.).type(orig_attn_mask[0].dtype) | |
inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1) | |
encoder_attention_mask_2d = torch.where(torch.sum(torch.stack(encoder_attention_mask_2d, dim=0), dim=0) < 0., -10000., 0.) | |
encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d | |
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask[0].dtype) | |
encoder_attention_mask = encoder_attention_mask_2d | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
## cross-attention amongst bg | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
del encoder_attention_mask_2d, inverted_encoder_attention_mask, inverted_encoder_attention_mask_2d, inverted_orig_mask, orig_attn_mask, attention_mask_2d, tmp_attention | |
torch.cuda.empty_cache() | |
hidden_states = attn_output + hidden_states | |
else: | |
norm_hidden_states2 = ( | |
self.norm2(hidden_states*(1-tmp), timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*(1-tmp)) | |
) | |
encoder_attention_mask2 = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype).to(encoder_attention_mask.device) | |
encoder_attention_mask2[:, :, 0] = -10000 | |
attn_output2 = self.attn2( | |
norm_hidden_states2, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask2, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output*tmp + attn_output2*(1-tmp)+ hidden_states | |
else: | |
hidden_states = attn_output*tmp + hidden_states | |
# 4. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size | |
ff_output = torch.cat( | |
[ | |
self.ff(hid_slice, scale=lora_scale) | |
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim) | |
], | |
dim=self._chunk_dim, | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states, scale=lora_scale) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim) | |
if activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh") | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim) | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(LoRACompatibleLinear(inner_dim, dim_out)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states, scale: float = 1.0): | |
for module in self.net: | |
if isinstance(module, (LoRACompatibleLinear, GEGLU)): | |
hidden_states = module(hidden_states, scale) | |
else: | |
hidden_states = module(hidden_states) | |
return hidden_states | |
class GELU(nn.Module): | |
r""" | |
GELU activation function with tanh approximation support with `approximate="tanh"`. | |
""" | |
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out) | |
self.approximate = approximate | |
def gelu(self, gate): | |
if gate.device.type != "mps": | |
return F.gelu(gate, approximate=self.approximate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) | |
def forward(self, hidden_states): | |
hidden_states = self.proj(hidden_states) | |
hidden_states = self.gelu(hidden_states) | |
return hidden_states | |
class GEGLU(nn.Module): | |
r""" | |
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = LoRACompatibleLinear(dim_in, dim_out * 2) | |
def gelu(self, gate): | |
if gate.device.type != "mps": | |
return F.gelu(gate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
def forward(self, hidden_states, scale: float = 1.0): | |
hidden_states, gate = self.proj(hidden_states, scale).chunk(2, dim=-1) | |
return hidden_states * self.gelu(gate) | |
class ApproximateGELU(nn.Module): | |
""" | |
The approximate form of Gaussian Error Linear Unit (GELU) | |
For more details, see section 2: https://arxiv.org/abs/1606.08415 | |
""" | |
def __init__(self, dim_in: int, dim_out: int): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out) | |
def forward(self, x): | |
x = self.proj(x) | |
return x * torch.sigmoid(1.702 * x) | |
class AdaLayerNorm(nn.Module): | |
""" | |
Norm layer modified to incorporate timestep embeddings. | |
""" | |
def __init__(self, embedding_dim, num_embeddings): | |
super().__init__() | |
self.emb = nn.Embedding(num_embeddings, embedding_dim) | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, embedding_dim * 2) | |
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) | |
def forward(self, x, timestep): | |
emb = self.linear(self.silu(self.emb(timestep))) | |
scale, shift = torch.chunk(emb, 2) | |
x = self.norm(x) * (1 + scale) + shift | |
return x | |
class AdaLayerNormZero(nn.Module): | |
""" | |
Norm layer adaptive layer norm zero (adaLN-Zero). | |
""" | |
def __init__(self, embedding_dim, num_embeddings): | |
super().__init__() | |
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) | |
self.silu = nn.SiLU() | |
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) | |
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) | |
def forward(self, x, timestep, class_labels, hidden_dtype=None): | |
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype))) | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) | |
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] | |
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp | |
class AdaGroupNorm(nn.Module): | |
""" | |
GroupNorm layer modified to incorporate timestep embeddings. | |
""" | |
def __init__( | |
self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5 | |
): | |
super().__init__() | |
self.num_groups = num_groups | |
self.eps = eps | |
if act_fn is None: | |
self.act = None | |
else: | |
self.act = get_activation(act_fn) | |
self.linear = nn.Linear(embedding_dim, out_dim * 2) | |
def forward(self, x, emb): | |
if self.act: | |
emb = self.act(emb) | |
emb = self.linear(emb) | |
emb = emb[:, :, None, None] | |
scale, shift = emb.chunk(2, dim=1) | |
x = F.group_norm(x, self.num_groups, eps=self.eps) | |
x = x * (1 + scale) + shift | |
return x | |