Spaces:
Sleeping
Sleeping
Anshul Nasery
commited on
Commit
•
44f2ca8
1
Parent(s):
93b2b48
Demo commit
Browse files- data/README.md +14 -0
- data/custom_prompts.csv +100 -0
- data/filtered_prompts.txt +125 -0
- data/generate_imc.py +196 -0
- data/generate_ssv2_st.py +150 -0
- data/get_bbox.py +84 -0
- env.yaml +107 -0
- src/app.py +222 -0
- src/app_modelscope.py +262 -0
- src/generation.py +128 -0
- src/gradio_utils.py +60 -0
- src/image_generation.py +366 -0
- src/make_image_grid.py +57 -0
- src/models/__init__.py +0 -0
- src/models/attention.py +612 -0
- src/models/attention_processor.py +1662 -0
- src/models/pipelines.py +1414 -0
- src/models/sd_pipeline.py +719 -0
- src/models/t2i_pipeline.py +770 -0
- src/models/transformer_2d.py +378 -0
- src/models/transformer_temporal.py +233 -0
- src/models/unet_2d_blocks.py +0 -0
- src/models/unet_2d_condition.py +1052 -0
- src/models/unet_3d_blocks.py +698 -0
- src/models/unet_3d_condition.py +673 -0
data/README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Evaluation Preprocessing
|
2 |
+
|
3 |
+
## MSR-VTT
|
4 |
+
Download the bounding box annotations for MSR-VTT from [here](https://drive.google.com/file/d/1OQvoR5zkohz5GpZxT0-fN1CPY9LjKT6y/view?usp=sharing). This is a pickle file with a dictionary. Each dictionary element has the video id, caption, subject of the caption and a sequence of bounding boxes. These were generated using `get_fg_obj.py`.
|
5 |
+
You can also download the videos from MSR-VTT from [this link](https://cove.thecvf.com/datasets/839). The [StyleGAN-v repo](https://github.com/universome/stylegan-v/blob/master/src/scripts/convert_videos_to_frames.py) is used to pre-process and convert the dataset into frames.
|
6 |
+
|
7 |
+
### Pre-processing
|
8 |
+
Our pre-processing pipeline is described here. We first extract the subject of the caption using Spacy. Then this subject is fed into Owl-ViT to obtain bounding boxes. If there are 0 bounding boxes corresponding to a subject, we use the next caption from the dataset. If there is atleast one bounding box, we interpolate bounding boxes for the missing frames linearly.
|
9 |
+
|
10 |
+
## ssv2-ST
|
11 |
+
Similar pre-processing is done for this dataset, except that a larger OwL-ViT model is used, and the first noun chunk is extracted instead of the subject. The former significantly slows down the pre-processing. The dataset downloading is a bit complex, you need to follow the instructions [here](https://github.com/MikeWangWZHL/Paxion#dataset-setup). Download the dataset and run `generate_ssv2_st.py`.
|
12 |
+
|
13 |
+
## Interactive Motion Control - IMC
|
14 |
+
We generate bounding boxes for this dataset using the `generate_imc.py` file. The prompts are in `custom_prompts.csv` and `filtered_prompts.csv`.
|
data/custom_prompts.csv
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
A butterfly resting on a flower.,Butterfly,Small,Square,Stationary
|
2 |
+
A koala clinging to a eucalyptus tree.,Koala,Medium,Rectangle Vertical,Stationary
|
3 |
+
A peacock displaying its feathers in a garden.,Peacock,Medium,Rectangle Horizontal,Stationary
|
4 |
+
A frog sitting on a lily pad in a pond.,Frog,Small,Square,Stationary
|
5 |
+
A deer standing in a snowy field.,Deer,Medium,Rectangle Horizontal,Stationary
|
6 |
+
A horse grazing in a meadow.,Horse,Medium,Rectangle Horizontal,Stationary
|
7 |
+
A squirrel holding an acorn in a park.,Squirrel,Small,Rectangle Vertical,Stationary
|
8 |
+
A parrot perched on a branch in the rainforest.,Parrot,Small,Rectangle Vertical,Stationary
|
9 |
+
A fox sitting in a forest clearing.,Fox,Medium,Rectangle Horizontal,Stationary
|
10 |
+
A swan floating gracefully on a lake.,Swan,Medium,Rectangle Horizontal,Stationary
|
11 |
+
A panda munching bamboo in a bamboo forest.,Panda,Large,Rectangle Vertical,Stationary
|
12 |
+
A hummingbird hovering near a flower.,Hummingbird,Small,Rectangle Vertical,Stationary
|
13 |
+
A penguin standing on an iceberg.,Penguin,Medium,Rectangle Vertical,Stationary
|
14 |
+
A lion lying in the savanna grass.,Lion,Large,Rectangle Horizontal,Stationary
|
15 |
+
An owl perched silently in a tree at night.,Owl,Medium,Rectangle Vertical,Stationary
|
16 |
+
A goat standing on a rocky hillside.,Goat,Medium,Rectangle Horizontal,Stationary
|
17 |
+
A dolphin just breaking the ocean surface.,Dolphin,Medium,Rectangle Horizontal,Stationary
|
18 |
+
A camel resting in a desert landscape.,Camel,Large,Rectangle Horizontal,Stationary
|
19 |
+
A kangaroo standing in the Australian outback.,Kangaroo,Medium,Rectangle Vertical,Stationary
|
20 |
+
An eagle sitting atop a mountain cliff.,Eagle,Small,Rectangle Vertical,Stationary
|
21 |
+
An ancient clock tower in a historic city square.,Clock Tower,Large,Rectangle Vertical,Stationary
|
22 |
+
A rustic wooden bridge over a tranquil stream.,Wooden Bridge,Medium,Rectangle Horizontal,Stationary
|
23 |
+
A grand piano in an elegant concert hall.,Grand Piano,Medium,Rectangle Horizontal,Stationary
|
24 |
+
A vintage car parked in front of a classic diner.,Vintage Car,Medium,Rectangle Horizontal,Stationary
|
25 |
+
A majestic lighthouse on a rocky coastline.,Lighthouse,Large,Rectangle Vertical,Stationary
|
26 |
+
A colorful hot air balloon tethered to the ground.,Hot Air Balloon,Large,Rectangle Vertical,Stationary
|
27 |
+
A medieval castle overlooking a scenic valley.,Castle,Large,Rectangle Horizontal,Stationary
|
28 |
+
A traditional windmill in a field of tulips.,Windmill,Large,Rectangle Vertical,Stationary
|
29 |
+
An intricate sculpture in a modern art museum.,Sculpture,Medium,Rectangle Vertical,Stationary
|
30 |
+
A red British telephone box on a city street.,Telephone Box,Medium,Rectangle Vertical,Stationary
|
31 |
+
A classic steam train stationed at an old railway platform.,Steam Train,Large,Rectangle Horizontal,Stationary
|
32 |
+
An old-fashioned street lamp on a foggy night.,Street Lamp,Medium,Rectangle Vertical,Stationary
|
33 |
+
A snow-covered cabin in a winter landscape.,Cabin,Medium,Rectangle Horizontal,Stationary
|
34 |
+
A beautifully crafted sundial in a botanical garden.,Sundial,Small,Square,Stationary
|
35 |
+
An ornate fountain in a public park.,Fountain,Medium,Square,Stationary
|
36 |
+
A weathered rowboat on a peaceful lakeshore.,Rowboat,Small,Rectangle Horizontal,Stationary
|
37 |
+
A detailed mural on the side of an urban building.,Mural,Large,Rectangle Horizontal,Stationary
|
38 |
+
A historical monument in a busy city center.,Monument,Large,Rectangle Vertical,Stationary
|
39 |
+
A charming gazebo in a lush garden.,Gazebo,Medium,Rectangle Horizontal,Stationary
|
40 |
+
A striking skyscraper against a city skyline.,Skyscraper,Large,Rectangle Vertical,Stationary
|
41 |
+
A cheetah sprinting across the savanna.,Cheetah,Medium,Rectangle Horizontal,Left to right
|
42 |
+
A school of fish swimming in a coral reef.,School of Fish,Medium,Rectangle Horizontal,Zig-zag
|
43 |
+
A hummingbird darting around a flower garden.,Hummingbird,Small,Square,Zig-zag
|
44 |
+
A horse galloping through a meadow.,Horse,Large,Rectangle Horizontal,Left to right
|
45 |
+
A squirrel scampering up a tree trunk.,Squirrel,Small,Rectangle Vertical,Up to down
|
46 |
+
A flock of geese flying in a V-formation.,Flock of Geese,Large,Rectangle Horizontal,Left to right
|
47 |
+
A rabbit hopping through a grassy field.,Rabbit,Small,Rectangle Horizontal,Zig-zag
|
48 |
+
A dolphin leaping out of the ocean waves.,Dolphin,Medium,Rectangle Horizontal,Up to down
|
49 |
+
A bee buzzing around a blooming sunflower.,Bee,Small,Square,Zig-zag
|
50 |
+
A butterfly fluttering over a meadow of wildflowers.,Butterfly,Small,Square,Zig-zag
|
51 |
+
A kangaroo bounding across the Australian outback.,Kangaroo,Medium,Rectangle Horizontal,Left to right
|
52 |
+
A hawk soaring in the sky above a mountain range.,Hawk,Medium,Rectangle Horizontal,Left to right
|
53 |
+
A spider spinning a web in the morning light.,Spider,Small,Square,Zig-zag
|
54 |
+
A snake slithering through a tropical rainforest.,Snake,Medium,Rectangle Horizontal,Zig-zag
|
55 |
+
A dog running to catch a frisbee in a park.,Dog,Medium,Rectangle Horizontal,Left to right
|
56 |
+
A cat playfully chasing a ball of yarn.,Cat,Small,Square,Zig-zag
|
57 |
+
A herd of elephants migrating across the African plains.,Herd of Elephants,Large,Rectangle Horizontal,Left to right
|
58 |
+
A bat flitting through the night sky.,Bat,Small,Rectangle Horizontal,Zig-zag
|
59 |
+
A group of penguins waddling on an Antarctic ice sheet.,Group of Penguins,Medium,Rectangle Horizontal,Left to right
|
60 |
+
A monkey swinging from branch to branch in the jungle.,Monkey,Medium,Rectangle Horizontal,Zig-zag
|
61 |
+
A woodpecker climbing up a tree trunk.,Woodpecker,Small,Rectangle Vertical,Up to down
|
62 |
+
A squirrel descending a tree after gathering nuts.,Squirrel,Small,Rectangle Vertical,Up to down
|
63 |
+
A snake slithering down a rocky hill.,Snake,Medium,Rectangle Vertical,Up to down
|
64 |
+
A bird diving towards the water to catch fish.,Bird,Small,Rectangle Vertical,Up to down
|
65 |
+
A monkey climbing up a vine in the rainforest.,Monkey,Medium,Rectangle Vertical,Up to down
|
66 |
+
A cat jumping down from a high fence.,Cat,Small,Rectangle Vertical,Up to down
|
67 |
+
An eagle descending from the sky to its nest.,Eagle,Medium,Rectangle Vertical,Up to down
|
68 |
+
A frog leaping up to catch a fly.,Frog,Small,Rectangle Vertical,Up to down
|
69 |
+
A spider descending on its web from a branch.,Spider,Small,Rectangle Vertical,Up to down
|
70 |
+
A mountain goat scaling a steep cliff.,Mountain Goat,Medium,Rectangle Vertical,Up to down
|
71 |
+
A koala climbing up a eucalyptus tree.,Koala,Small,Rectangle Vertical,Up to down
|
72 |
+
A bear climbing down a tree after spotting a threat.,Bear,Large,Rectangle Vertical,Up to down
|
73 |
+
A parrot flying upwards towards the treetops.,Parrot,Small,Rectangle Vertical,Up to down
|
74 |
+
A squirrel jumping from one tree to another,Squirrel,Small,Rectangle Vertical,Up to down
|
75 |
+
A bat swooping down from a cave's ceiling.,Bat,Small,Rectangle Vertical,Up to down
|
76 |
+
A duck diving underwater in search of food.,Duck,Medium,Rectangle Vertical,Up to down
|
77 |
+
A kangaroo hopping down a gentle slope.,Kangaroo,Medium,Rectangle Vertical,Up to down
|
78 |
+
A rabbit burrowing downwards into its warren.,Rabbit,Small,Rectangle Vertical,Up to down
|
79 |
+
A raccoon climbing up a city lamppost.,Raccoon,Medium,Rectangle Vertical,Up to down
|
80 |
+
An owl swooping down on its prey during the night.,Owl,Medium,Rectangle Vertical,Up to down
|
81 |
+
A train chugging along a mountainous landscape.,Train,Large,Rectangle Horizontal,Left to right
|
82 |
+
A hot air balloon drifting across a clear sky.,Hot Air Balloon,Large,Rectangle Vertical,Up to down
|
83 |
+
A sailboat gliding over the ocean waves.,Sailboat,Medium,Rectangle Horizontal,Left to right
|
84 |
+
A vintage car cruising down a coastal highway.,Vintage Car,Medium,Rectangle Horizontal,Left to right
|
85 |
+
A windmill turning its blades in a gentle breeze.,Windmill,Large,Rectangle Vertical,Left to right
|
86 |
+
A Ferris wheel rotating at a lively carnival.,Ferris Wheel,Large,Rectangle Vertical,Left to right
|
87 |
+
A satellite orbiting Earth in outer space.,Satellite,Small,Rectangle Horizontal,Left to right
|
88 |
+
A red double-decker bus moving through London streets.,Double-Decker Bus,Large,Rectangle Vertical,Left to right
|
89 |
+
A bicycle rider pedaling through a city park.,Bicycle Rider,Medium,Rectangle Horizontal,Left to right
|
90 |
+
A skateboarder performing tricks at a skate park.,Skateboarder,Small,Rectangle Horizontal,Left to right
|
91 |
+
A gondola floating down a Venetian canal.,Gondola,Medium,Rectangle Horizontal,Left to right
|
92 |
+
A jet plane flying high in the sky.,Jet Plane,Large,Rectangle Horizontal,Left to right
|
93 |
+
A helicopter hovering above a cityscape.,Helicopter,Medium,Rectangle Horizontal,Left to right
|
94 |
+
A roller coaster looping in an amusement park.,Roller Coaster,Large,Rectangle Horizontal,Left to right
|
95 |
+
A leaf falling gently from a tree.,Leaf,Small,Rectangle Vertical,Up to down
|
96 |
+
A mechanical clock's hands ticking forward.,Clock,Medium,Square,Left to right
|
97 |
+
A streetcar trundling down tracks in a historic district.,Streetcar,Medium,Rectangle Horizontal,Left to right
|
98 |
+
A rocket launching into space from a launchpad.,Rocket,Large,Rectangle Vertical,Up to down
|
99 |
+
A paper plane gliding in the air.,Paper Plane,Small,Rectangle Horizontal,Left to right
|
100 |
+
An escalator carrying people up in a shopping mall.,Escalator,Large,Rectangle Vertical,Up to down
|
data/filtered_prompts.txt
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
A woodpecker climbing up a tree trunk.
|
2 |
+
A woodpecker climbing up a tree trunk.
|
3 |
+
A woodpecker climbing up a tree trunk.
|
4 |
+
A squirrel descending a tree after gathering nuts.
|
5 |
+
A squirrel descending a tree after gathering nuts.
|
6 |
+
A squirrel descending a tree after gathering nuts.
|
7 |
+
A bird diving towards the water to catch fish.
|
8 |
+
A bird diving towards the water to catch fish.
|
9 |
+
A bird diving towards the water to catch fish.
|
10 |
+
A frog leaping up to catch a fly.
|
11 |
+
A frog leaping up to catch a fly.
|
12 |
+
A frog leaping up to catch a fly.
|
13 |
+
A spider descending on its web from a branch.
|
14 |
+
A spider descending on its web from a branch.
|
15 |
+
A spider descending on its web from a branch.
|
16 |
+
A parrot flying upwards towards the treetops.
|
17 |
+
A parrot flying upwards towards the treetops.
|
18 |
+
A parrot flying upwards towards the treetops.
|
19 |
+
A squirrel jumping from one tree to another
|
20 |
+
A squirrel jumping from one tree to another
|
21 |
+
A squirrel jumping from one tree to another
|
22 |
+
A rabbit burrowing downwards into its warren.
|
23 |
+
A rabbit burrowing downwards into its warren.
|
24 |
+
A rabbit burrowing downwards into its warren.
|
25 |
+
A satellite orbiting Earth in outer space.
|
26 |
+
A satellite orbiting Earth in outer space.
|
27 |
+
A satellite orbiting Earth in outer space.
|
28 |
+
A skateboarder performing tricks at a skate park.
|
29 |
+
A skateboarder performing tricks at a skate park.
|
30 |
+
A skateboarder performing tricks at a skate park.
|
31 |
+
A leaf falling gently from a tree.
|
32 |
+
A leaf falling gently from a tree.
|
33 |
+
A leaf falling gently from a tree.
|
34 |
+
A paper plane gliding in the air.
|
35 |
+
A paper plane gliding in the air.
|
36 |
+
A bear climbing down a tree after spotting a threat.
|
37 |
+
A bear climbing down a tree after spotting a threat.
|
38 |
+
A bear climbing down a tree after spotting a threat.
|
39 |
+
A duck diving underwater in search of food.
|
40 |
+
A duck diving underwater in search of food.
|
41 |
+
A duck diving underwater in search of food.
|
42 |
+
A kangaroo hopping down a gentle slope.
|
43 |
+
A kangaroo hopping down a gentle slope.
|
44 |
+
A kangaroo hopping down a gentle slope.
|
45 |
+
An owl swooping down on its prey during the night.
|
46 |
+
An owl swooping down on its prey during the night.
|
47 |
+
An owl swooping down on its prey during the night.
|
48 |
+
A hot air balloon drifting across a clear sky.
|
49 |
+
A hot air balloon drifting across a clear sky.
|
50 |
+
A hot air balloon drifting across a clear sky.
|
51 |
+
A sailboat gliding over the ocean waves.
|
52 |
+
A sailboat gliding over the ocean waves.
|
53 |
+
A sailboat gliding over the ocean waves.
|
54 |
+
A vintage car cruising down a coastal highway.
|
55 |
+
A vintage car cruising down a coastal highway.
|
56 |
+
A vintage car cruising down a coastal highway.
|
57 |
+
A red double-decker bus moving through London streets.
|
58 |
+
A red double-decker bus moving through London streets.
|
59 |
+
A red double-decker bus moving through London streets.
|
60 |
+
A jet plane flying high in the sky.
|
61 |
+
A jet plane flying high in the sky.
|
62 |
+
A jet plane flying high in the sky.
|
63 |
+
A helicopter hovering above a cityscape.
|
64 |
+
A helicopter hovering above a cityscape.
|
65 |
+
A helicopter hovering above a cityscape.
|
66 |
+
A roller coaster looping in an amusement park.
|
67 |
+
A roller coaster looping in an amusement park.
|
68 |
+
A roller coaster looping in an amusement park.
|
69 |
+
A streetcar trundling down tracks in a historic district.
|
70 |
+
A streetcar trundling down tracks in a historic district.
|
71 |
+
A streetcar trundling down tracks in a historic district.
|
72 |
+
A rocket launching into space from a launchpad.
|
73 |
+
A rocket launching into space from a launchpad.
|
74 |
+
A rocket launching into space from a launchpad.
|
75 |
+
A deer standing in a snowy field.
|
76 |
+
A deer standing in a snowy field.
|
77 |
+
A deer standing in a snowy field.
|
78 |
+
A horse grazing in a meadow.
|
79 |
+
A horse grazing in a meadow.
|
80 |
+
A horse grazing in a meadow.
|
81 |
+
A fox sitting in a forest clearing.
|
82 |
+
A fox sitting in a forest clearing.
|
83 |
+
A fox sitting in a forest clearing.
|
84 |
+
A swan floating gracefully on a lake.
|
85 |
+
A swan floating gracefully on a lake.
|
86 |
+
A swan floating gracefully on a lake.
|
87 |
+
A panda munching bamboo in a bamboo forest.
|
88 |
+
A panda munching bamboo in a bamboo forest.
|
89 |
+
A panda munching bamboo in a bamboo forest.
|
90 |
+
A penguin standing on an iceberg.
|
91 |
+
A penguin standing on an iceberg.
|
92 |
+
A penguin standing on an iceberg.
|
93 |
+
A lion lying in the savanna grass.
|
94 |
+
A lion lying in the savanna grass.
|
95 |
+
A lion lying in the savanna grass.
|
96 |
+
An owl perched silently in a tree at night.
|
97 |
+
An owl perched silently in a tree at night.
|
98 |
+
An owl perched silently in a tree at night.
|
99 |
+
A dolphin just breaking the ocean surface.
|
100 |
+
A dolphin just breaking the ocean surface.
|
101 |
+
A dolphin just breaking the ocean surface.
|
102 |
+
A camel resting in a desert landscape.
|
103 |
+
A camel resting in a desert landscape.
|
104 |
+
A camel resting in a desert landscape.
|
105 |
+
A kangaroo standing in the Australian outback.
|
106 |
+
A kangaroo standing in the Australian outback.
|
107 |
+
A kangaroo standing in the Australian outback.
|
108 |
+
A grand piano in an elegant concert hall.
|
109 |
+
A grand piano in an elegant concert hall.
|
110 |
+
A grand piano in an elegant concert hall.
|
111 |
+
A vintage car parked in front of a classic diner.
|
112 |
+
A vintage car parked in front of a classic diner.
|
113 |
+
A vintage car parked in front of a classic diner.
|
114 |
+
A colorful hot air balloon tethered to the ground.
|
115 |
+
A colorful hot air balloon tethered to the ground.
|
116 |
+
A colorful hot air balloon tethered to the ground.
|
117 |
+
A red British telephone box on a city street.
|
118 |
+
A red British telephone box on a city street.
|
119 |
+
A red British telephone box on a city street.
|
120 |
+
A classic steam train stationed at an old railway platform.
|
121 |
+
A classic steam train stationed at an old railway platform.
|
122 |
+
A classic steam train stationed at an old railway platform.
|
123 |
+
An old-fashioned street lamp on a foggy night.
|
124 |
+
An old-fashioned street lamp on a foggy night.
|
125 |
+
An old-fashioned street lamp on a foggy night.
|
data/generate_imc.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import csv
|
5 |
+
import pickle
|
6 |
+
import tqdm
|
7 |
+
|
8 |
+
def clamp(x, min_val, max_val):
|
9 |
+
return int(max(min(x, max_val), min_val))
|
10 |
+
|
11 |
+
def generate_moving_frames_simpler(canvas_size, num_frames, aspect_ratio, bounding_box_size, motion_type, up_to_down_strict=False, keep_in_frame=True):
|
12 |
+
# Mapping size to bounding box dimensions
|
13 |
+
size_mapping = {'Small': 0.25, 'Medium': 0.3, 'Large': 0.3}
|
14 |
+
aspect_ratio_mapping = {'Rectangle Vertical': (1.33, 1), 'Rectangle Horizontal': (1, 1.33), 'Square': (1, 1)}
|
15 |
+
|
16 |
+
# Calculate bounding box dimensions
|
17 |
+
ratio = aspect_ratio_mapping[aspect_ratio]
|
18 |
+
box_height = int(canvas_size[0] * size_mapping[bounding_box_size] * ratio[0])
|
19 |
+
box_width = int(canvas_size[1] * size_mapping[bounding_box_size] * ratio[1])
|
20 |
+
|
21 |
+
x_init_pos = [0.1 * canvas_size[1], 0.25 * canvas_size[1], 0.45*canvas_size[1], 0.7 * canvas_size[1]]
|
22 |
+
y_init_pos = [0.1 * canvas_size[0], 0.25 * canvas_size[0], 0.45*canvas_size[0], 0.7 * canvas_size[0]]
|
23 |
+
|
24 |
+
speed_dir = random.choice([-1,1]) # random.randint(1, 3)*4
|
25 |
+
# print('-'*20)
|
26 |
+
# print(motion_type)
|
27 |
+
if 'up' in motion_type.lower():
|
28 |
+
# Freedom in horizontal init
|
29 |
+
# Vertical init depends on upward or downward motion
|
30 |
+
pos_x = random.choice(x_init_pos) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
31 |
+
if up_to_down_strict == 'up':
|
32 |
+
# pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
33 |
+
speed_dir = -1.
|
34 |
+
elif up_to_down_strict == 'down':
|
35 |
+
# pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
36 |
+
speed_dir = 1.
|
37 |
+
# y_end_max = canvas_size[0] - box_height
|
38 |
+
|
39 |
+
# else:
|
40 |
+
if speed_dir == 1.:
|
41 |
+
pos_y = np.random.choice(y_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
|
42 |
+
y_end_max = canvas_size[0] - box_height
|
43 |
+
else:
|
44 |
+
pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
|
45 |
+
y_end_max = box_height
|
46 |
+
max_speed = np.abs(y_end_max - pos_y) / num_frames
|
47 |
+
|
48 |
+
speed = random.randint(2, 4)*4
|
49 |
+
speed = min(speed, max_speed)
|
50 |
+
speed = speed_dir * speed
|
51 |
+
elif 'left' in motion_type.lower():
|
52 |
+
# Freedom in vertical init
|
53 |
+
# Horizontal init depends on upward or downward motion
|
54 |
+
pos_y = random.choice(y_init_pos) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
|
55 |
+
if up_to_down_strict:
|
56 |
+
speed_dir = 1.
|
57 |
+
|
58 |
+
if speed_dir == 1.:
|
59 |
+
pos_x = np.random.choice(x_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
60 |
+
x_end_max = canvas_size[1] - box_width
|
61 |
+
else:
|
62 |
+
pos_x = np.random.choice(x_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
63 |
+
x_end_max = box_width
|
64 |
+
max_speed = np.abs(x_end_max - pos_x) / num_frames
|
65 |
+
|
66 |
+
speed = random.randint(2, 4)*4
|
67 |
+
speed = min(speed, max_speed)
|
68 |
+
speed = speed_dir * speed
|
69 |
+
|
70 |
+
else:
|
71 |
+
speed_dir_y = random.choice([-1,1])
|
72 |
+
if speed_dir == 1.:
|
73 |
+
pos_x = np.random.choice(x_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
74 |
+
x_end_max = canvas_size[1] - box_width
|
75 |
+
else:
|
76 |
+
pos_x = np.random.choice(x_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
77 |
+
x_end_max = box_width
|
78 |
+
|
79 |
+
if speed_dir_y == 1.:
|
80 |
+
pos_y = np.random.choice(y_init_pos[:2]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
|
81 |
+
y_end_max = canvas_size[0] - box_height
|
82 |
+
else:
|
83 |
+
pos_y = np.random.choice(y_init_pos[2:]) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
|
84 |
+
y_end_max = box_height
|
85 |
+
max_speed_x = np.abs(x_end_max - pos_x) / num_frames
|
86 |
+
max_speed_y = np.abs(y_end_max - pos_y) / num_frames
|
87 |
+
speed_x = random.randint(2, 4)*4
|
88 |
+
speed_y = random.randint(2, 4)*4
|
89 |
+
speed_x = min(speed_x, max_speed_x)
|
90 |
+
speed_y = min(speed_y, max_speed_y)
|
91 |
+
speed_x, speed_y = (speed_dir * speed_x, speed_dir_y * speed_y)
|
92 |
+
|
93 |
+
frames = []
|
94 |
+
|
95 |
+
|
96 |
+
for _ in range(num_frames):
|
97 |
+
canvas = np.zeros(canvas_size)
|
98 |
+
|
99 |
+
# Determine movement direction and apply movement
|
100 |
+
if motion_type == "Left to right":
|
101 |
+
pos_x = (pos_x + speed) # % (canvas_size[1] - box_width)
|
102 |
+
pos_y = pos_y + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
|
103 |
+
elif motion_type == "Up to down":
|
104 |
+
pos_y = (pos_y + speed) # % (canvas_size[0] - box_height)
|
105 |
+
pos_x = pos_x + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
106 |
+
elif motion_type == "Zig-zag":
|
107 |
+
# Zig-zag motion alternates between horizontal and vertical movement
|
108 |
+
if _ % 2 == 0:
|
109 |
+
pos_x = (pos_x + speed_x) # % (canvas_size[1] - box_width)
|
110 |
+
else:
|
111 |
+
pos_y = (pos_y + speed_y) # % (canvas_size[0] - box_height)
|
112 |
+
canvas[clamp(pos_y, 0, canvas_size[0]):clamp(pos_y + box_height, 0, canvas_size[0]),
|
113 |
+
clamp(pos_x, 0, canvas_size[1]):clamp(pos_x + box_width, 0, canvas_size[1])] = 1
|
114 |
+
|
115 |
+
# Add frame to the list
|
116 |
+
frames.append(canvas)
|
117 |
+
|
118 |
+
return frames
|
119 |
+
|
120 |
+
|
121 |
+
def generate_stationary_frames_simpler(canvas_size, num_frames, aspect_ratio, bounding_box_size):
|
122 |
+
# Mapping size to bounding box dimensions
|
123 |
+
size_mapping = {'Small': 0.25, 'Medium': 0.3, 'Large': 0.3}
|
124 |
+
aspect_ratio_mapping = {'Rectangle Vertical': (1.33, 1), 'Rectangle Horizontal': (1, 1.33), 'Square': (1, 1)}
|
125 |
+
|
126 |
+
# Calculate bounding box dimensions
|
127 |
+
ratio = aspect_ratio_mapping[aspect_ratio]
|
128 |
+
box_height = int(canvas_size[0] * size_mapping[bounding_box_size] * ratio[0])
|
129 |
+
box_width = int(canvas_size[1] * size_mapping[bounding_box_size] * ratio[1])
|
130 |
+
|
131 |
+
x_init_pos = [0.1 * canvas_size[1], 0.25 * canvas_size[1], 0.45*canvas_size[1], 0.7 * canvas_size[1]]
|
132 |
+
y_init_pos = [0.1 * canvas_size[0], 0.25 * canvas_size[0], 0.45*canvas_size[0], 0.7 * canvas_size[0]]
|
133 |
+
|
134 |
+
pos_x = np.random.choice(x_init_pos) + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
135 |
+
pos_y = np.random.choice(y_init_pos) + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
|
136 |
+
# Initialize frames
|
137 |
+
frames = []
|
138 |
+
for _ in range(num_frames):
|
139 |
+
canvas = np.zeros(canvas_size)
|
140 |
+
|
141 |
+
# Determine movement direction and apply movement
|
142 |
+
pos_y = pos_y + random.randint(int(-0.01 * canvas_size[0]), int(0.01 * canvas_size[0]))
|
143 |
+
pos_x = pos_x + random.randint(int(-0.01 * canvas_size[1]), int(0.01 * canvas_size[1]))
|
144 |
+
|
145 |
+
canvas[clamp(pos_y, 0, canvas_size[0]):clamp(pos_y + box_height, 0, canvas_size[0]),
|
146 |
+
clamp(pos_x, 0, canvas_size[1]):clamp(pos_x + box_width, 0, canvas_size[1])] = 1
|
147 |
+
|
148 |
+
# Add frame to the list
|
149 |
+
frames.append(canvas)
|
150 |
+
|
151 |
+
|
152 |
+
return frames
|
153 |
+
|
154 |
+
|
155 |
+
input_file_path = "custom_prompts.csv"
|
156 |
+
output_file_path = "custom_prompts_with_bb.pkl"
|
157 |
+
num_videos_per_prompt = 3
|
158 |
+
video_id = 1100
|
159 |
+
all_records = []
|
160 |
+
frames_per_prompts = 3
|
161 |
+
num_frames = 16
|
162 |
+
with open('filtered_prompts.txt') as f:
|
163 |
+
GOOD_PROMPTS = set([x.strip() for x in f.readlines()])
|
164 |
+
with open(input_file_path, "r") as f:
|
165 |
+
data = csv.reader(f)
|
166 |
+
for row in tqdm.tqdm(data):
|
167 |
+
prompt = row[0]
|
168 |
+
prompt = prompt.replace('herd of', '').replace('group of', '').replace('flock of', '').replace('school of', '').replace('escalator', 'elevator')
|
169 |
+
subject = row[1].lower().replace('herd of', '').replace('group of', '').replace('flock of', '').replace('school of', '').replace('escalator', 'elevator')
|
170 |
+
if prompt not in GOOD_PROMPTS:
|
171 |
+
continue
|
172 |
+
canvas_size = (224, 224)
|
173 |
+
frames = []
|
174 |
+
if row[-1] == "Stationary":
|
175 |
+
for _ in range(frames_per_prompts):
|
176 |
+
frames.append(generate_stationary_frames_simpler(canvas_size, num_frames, row[3], row[2]))
|
177 |
+
else:
|
178 |
+
for _ in range(frames_per_prompts):
|
179 |
+
up_to_down_strict = False
|
180 |
+
if "up" in prompt.lower() or 'ascending' in prompt.lower():
|
181 |
+
up_to_down_strict = 'up'
|
182 |
+
elif "down" in prompt.lower() or 'descending' in prompt.lower():
|
183 |
+
up_to_down_strict = 'down'
|
184 |
+
else:
|
185 |
+
up_to_down_strict = False
|
186 |
+
frames.append(generate_moving_frames_simpler(canvas_size, num_frames, row[3], row[2], row[4], up_to_down_strict))
|
187 |
+
|
188 |
+
for i in range(frames_per_prompts):
|
189 |
+
record_dict = {"video_id": video_id, "prompt": prompt, "frames": frames[i], "subject": row[1], "motion": row[4], "aspect_ratio": row[3], "bounding_box_size": row[2]}
|
190 |
+
all_records.append(record_dict)
|
191 |
+
video_id += 1
|
192 |
+
print(f"Wrote {len(all_records)} records to {output_file_path}")
|
193 |
+
with open(output_file_path, "wb") as f:
|
194 |
+
pickle.dump(all_records, f)
|
195 |
+
|
196 |
+
|
data/generate_ssv2_st.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#@title Get bounding boxes for the subject
|
2 |
+
from transformers import pipeline
|
3 |
+
from moviepy.editor import VideoFileClip
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import tqdm
|
9 |
+
import pickle
|
10 |
+
import torch
|
11 |
+
|
12 |
+
checkpoint = "google/owlvit-large-patch14"
|
13 |
+
detector = pipeline(model=checkpoint, task="zero-shot-object-detection", cache_dir="/coc/pskynet4/yashjain/", device='cuda:0')
|
14 |
+
|
15 |
+
|
16 |
+
# from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
17 |
+
|
18 |
+
# processor = Owlv2Processor.from_pretrained("google/owlv2-base-patch16-ensemble")
|
19 |
+
# model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-base-patch16-ensemble")
|
20 |
+
|
21 |
+
# def owl_inference(image, text):
|
22 |
+
# inputs = inputs = processor(text=text, images=image, return_tensors="pt")
|
23 |
+
# outputs = model(**inputs)
|
24 |
+
# target_sizes = torch.Tensor([image.size[::-1]])
|
25 |
+
# results = processor.post_process_object_detection(outputs=outputs, threshold=0.1, target_sizes=target_sizes)
|
26 |
+
# return results[0]['boxes']
|
27 |
+
|
28 |
+
def find_surrounding_masks(mask_presence):
|
29 |
+
# Finds the indices of the surrounding masks for each gap
|
30 |
+
gap_info = []
|
31 |
+
start = None
|
32 |
+
|
33 |
+
for i, present in enumerate(mask_presence):
|
34 |
+
if present and start is not None:
|
35 |
+
end = i
|
36 |
+
gap_info.append((start, end))
|
37 |
+
start = None
|
38 |
+
elif not present and start is None and i > 0:
|
39 |
+
start = i - 1
|
40 |
+
|
41 |
+
# Handle the special case where the gap is at the end
|
42 |
+
if start is not None:
|
43 |
+
gap_info.append((start, len(mask_presence)))
|
44 |
+
|
45 |
+
return gap_info
|
46 |
+
|
47 |
+
def copy_edge_masks(mask_list, mask_presence):
|
48 |
+
if not mask_presence[-1]:
|
49 |
+
# Find the last present mask and copy it to the end
|
50 |
+
for i in reversed(range(len(mask_presence))):
|
51 |
+
if mask_presence[i]:
|
52 |
+
mask_list[i+1:] = [mask_list[i]] * (len(mask_presence) - i - 1)
|
53 |
+
break
|
54 |
+
|
55 |
+
def interpolate_masks(mask_list, mask_presence):
|
56 |
+
# Ensure the mask list and mask presence list are the same length
|
57 |
+
assert len(mask_list) == len(mask_presence), "Mask list and presence list must have the same length."
|
58 |
+
|
59 |
+
# Copy edge masks if there are gaps at the start or end
|
60 |
+
# copy_edge_masks(mask_list, mask_presence)
|
61 |
+
|
62 |
+
# Find surrounding masks for gaps
|
63 |
+
gap_info = find_surrounding_masks(mask_presence)
|
64 |
+
|
65 |
+
# Interpolate the masks in the gaps
|
66 |
+
for start, end in gap_info:
|
67 |
+
end = min(end, len(mask_list)-1)
|
68 |
+
num_steps = end - start - 1
|
69 |
+
prev_mask = mask_list[start]
|
70 |
+
next_mask = mask_list[end]
|
71 |
+
step = (next_mask - prev_mask) / (num_steps + 1)
|
72 |
+
interpolated_masks = [(prev_mask + step * (i + 1)).round().astype(int) for i in range(num_steps)]
|
73 |
+
mask_list[start + 1:end] = interpolated_masks
|
74 |
+
|
75 |
+
return mask_list
|
76 |
+
|
77 |
+
def get_bounding_boxes(clip_path, subject):
|
78 |
+
# Read video from the path
|
79 |
+
clip = VideoFileClip(clip_path)
|
80 |
+
all_bboxes = []
|
81 |
+
bbox_present = []
|
82 |
+
|
83 |
+
num_bb = 0
|
84 |
+
|
85 |
+
for fidx,frame in enumerate(clip.iter_frames()):
|
86 |
+
if fidx > 24: break
|
87 |
+
|
88 |
+
frame = Image.fromarray(frame)
|
89 |
+
|
90 |
+
predictions = detector(
|
91 |
+
frame,
|
92 |
+
candidate_labels=[subject,],
|
93 |
+
)
|
94 |
+
try:
|
95 |
+
|
96 |
+
bbox = predictions[0]["box"]
|
97 |
+
|
98 |
+
bbox = (bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"])
|
99 |
+
|
100 |
+
# Get a zeros array of the same size as the frame
|
101 |
+
canvas = np.zeros(frame.size[::-1])
|
102 |
+
# Draw the bounding box on the canvas
|
103 |
+
canvas[bbox[1]:bbox[3], bbox[0]:bbox[2]] = 1
|
104 |
+
# Add the canvas to the list of bounding boxes
|
105 |
+
all_bboxes.append(canvas)
|
106 |
+
bbox_present.append(True)
|
107 |
+
num_bb += 1
|
108 |
+
except Exception as e:
|
109 |
+
|
110 |
+
# Append an empty canvas, we will interpolate later
|
111 |
+
all_bboxes.append(np.zeros(frame.size[::-1]))
|
112 |
+
bbox_present.append(False)
|
113 |
+
continue
|
114 |
+
|
115 |
+
# Design decision
|
116 |
+
interpolated_masks = interpolate_masks(all_bboxes, bbox_present)
|
117 |
+
return interpolated_masks, num_bb
|
118 |
+
|
119 |
+
import json
|
120 |
+
BASE_DIR = '/scr/clips_downsampled_5fps_downsized_224x224'
|
121 |
+
annotations = json.load(open('/gscratch/sewoong/anasery/datasets/ssv2/datasets/SSv2/ssv2_label_ssv2_template/ssv2_ret_label_val_small_filtered.json', 'r'))
|
122 |
+
|
123 |
+
records_with_masks = []
|
124 |
+
ridx = 0
|
125 |
+
for idx,record in tqdm.tqdm(enumerate(annotations)):
|
126 |
+
video_id = record['video']
|
127 |
+
print(f"{record['caption']} - {record['nouns']}")
|
128 |
+
# for video_id in video_ids:
|
129 |
+
new_record = record.copy()
|
130 |
+
new_record['video'] = video_id.replace('webm', 'mp4')
|
131 |
+
all_masks = []
|
132 |
+
all_num_bb = []
|
133 |
+
for subject in record['nouns']:
|
134 |
+
masks, num_bb = get_bounding_boxes(clip_path=os.path.join(BASE_DIR, video_id.replace('webm', 'mp4')), subject=subject)
|
135 |
+
all_masks.append(masks)
|
136 |
+
all_num_bb.append(num_bb)
|
137 |
+
try:
|
138 |
+
print(f"{record['video']} , subj - {record['nouns']}, bb - {all_num_bb}")
|
139 |
+
except:
|
140 |
+
continue
|
141 |
+
new_record['masks'] = all_masks
|
142 |
+
records_with_masks.append(new_record)
|
143 |
+
ridx += 1
|
144 |
+
|
145 |
+
if ridx % 100 == 0:
|
146 |
+
with open(f'/gscratch/sewoong/anasery/datasets/ssv2/datasets/SSv2/SSv2_label_with_two_obj_masks.pkl', 'wb') as f:
|
147 |
+
pickle.dump(records_with_masks, f)
|
148 |
+
|
149 |
+
with open(f'/gscratch/sewoong/anasery/datasets/ssv2/datasets/SSv2/SSv2_label_with_two_obj_masks.pkl', 'wb') as f:
|
150 |
+
pickle.dump(records_with_masks, f)
|
data/get_bbox.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#@title Get bounding boxes for the subject
|
2 |
+
from transformers import pipeline
|
3 |
+
from moviepy.editor import VideoFileClip
|
4 |
+
from PIL import Image
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import tqdm
|
9 |
+
import pickle
|
10 |
+
import torch
|
11 |
+
|
12 |
+
checkpoint = "google/owlvit-large-patch14"
|
13 |
+
detector = pipeline(model=checkpoint, task="zero-shot-object-detection", device='cuda:0')
|
14 |
+
|
15 |
+
|
16 |
+
def get_bounding_boxes(clip_path, subject):
|
17 |
+
# Read video from the path
|
18 |
+
clip = VideoFileClip(clip_path)
|
19 |
+
all_bboxes = []
|
20 |
+
bbox_present = []
|
21 |
+
|
22 |
+
num_bb = 0
|
23 |
+
for fidx,frame in enumerate(clip.iter_frames()):
|
24 |
+
frame = Image.fromarray(frame)
|
25 |
+
|
26 |
+
predictions = detector(
|
27 |
+
frame,
|
28 |
+
candidate_labels=[subject,],
|
29 |
+
)
|
30 |
+
try:
|
31 |
+
|
32 |
+
bbox = predictions[0]["box"]
|
33 |
+
|
34 |
+
bbox = (bbox["xmin"], bbox["ymin"], bbox["xmax"], bbox["ymax"])
|
35 |
+
|
36 |
+
# Get a zeros array of the same size as the frame
|
37 |
+
canvas = np.zeros(frame.size[::-1])
|
38 |
+
# Draw the bounding box on the canvas
|
39 |
+
canvas[bbox[1]:bbox[3], bbox[0]:bbox[2]] = 1
|
40 |
+
# Add the canvas to the list of bounding boxes
|
41 |
+
all_bboxes.append(canvas)
|
42 |
+
bbox_present.append(True)
|
43 |
+
num_bb += 1
|
44 |
+
except Exception as e:
|
45 |
+
|
46 |
+
# Append an empty canvas, we will interpolate later
|
47 |
+
all_bboxes.append(np.zeros(frame.size[::-1]))
|
48 |
+
bbox_present.append(False)
|
49 |
+
continue
|
50 |
+
return all_bboxes, num_bb
|
51 |
+
|
52 |
+
import pickle as pkl
|
53 |
+
dir_path = '/your/result/path'
|
54 |
+
|
55 |
+
video_filename = '2_of_40_2.mp4'
|
56 |
+
output_bbox = []
|
57 |
+
with open("/ssv2dataset/path.pkl", "rb") as f:
|
58 |
+
data = pkl.load(f)
|
59 |
+
dataset_size = len(data)
|
60 |
+
failed_cnt = 0
|
61 |
+
for i, d in tqdm.tqdm(enumerate(data)):
|
62 |
+
try:
|
63 |
+
# print(f"{d['subject']} || {d['caption']} || {d['video']}")
|
64 |
+
filename = d['video'].split('.')[0]
|
65 |
+
video_path = os.path.join(dir_path, filename, video_filename)
|
66 |
+
fg_object = d['subject']
|
67 |
+
masks, num_bb = get_bounding_boxes(video_path, fg_object)
|
68 |
+
|
69 |
+
output_bbox.append({
|
70 |
+
'caption': d['caption'],
|
71 |
+
'video': d['video'],
|
72 |
+
'subject': d['subject'],
|
73 |
+
'mask': masks,
|
74 |
+
'num_bb': num_bb
|
75 |
+
})
|
76 |
+
# print(num_bb)
|
77 |
+
except:
|
78 |
+
print(f"Missed #{i} with Caption: {d['caption']}")
|
79 |
+
failed_cnt += 1
|
80 |
+
|
81 |
+
with open(f"/output/path/iou_eval/ssv2_modelscope_{video_filename.split('.')[0]}_bbox-v2.pkl", "wb") as f:
|
82 |
+
pkl.dump(output_bbox, f)
|
83 |
+
|
84 |
+
print(f"Failed: {failed_cnt} out of {dataset_size}")
|
env.yaml
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: llmgd-3
|
2 |
+
channels:
|
3 |
+
- pytorch
|
4 |
+
- defaults
|
5 |
+
dependencies:
|
6 |
+
- _libgcc_mutex=0.1=main
|
7 |
+
- _openmp_mutex=5.1=1_gnu
|
8 |
+
- blas=1.0=mkl
|
9 |
+
- brotlipy=0.7.0=py310h7f8727e_1002
|
10 |
+
- bzip2=1.0.8=h7b6447c_0
|
11 |
+
- ca-certificates=2023.08.22=h06a4308_0
|
12 |
+
- certifi=2023.7.22=py310h06a4308_0
|
13 |
+
- cffi=1.15.1=py310h5eee18b_3
|
14 |
+
- charset-normalizer=2.0.4=pyhd3eb1b0_0
|
15 |
+
- cryptography=41.0.3=py310hdda0065_0
|
16 |
+
- cudatoolkit=11.3.1=h2bc3f7f_2
|
17 |
+
- ffmpeg=4.3=hf484d3e_0
|
18 |
+
- freetype=2.12.1=h4a9f257_0
|
19 |
+
- giflib=5.2.1=h5eee18b_3
|
20 |
+
- gmp=6.2.1=h295c915_3
|
21 |
+
- gnutls=3.6.15=he1e5248_0
|
22 |
+
- idna=3.4=py310h06a4308_0
|
23 |
+
- intel-openmp=2023.1.0=hdb19cb5_46305
|
24 |
+
- jpeg=9e=h5eee18b_1
|
25 |
+
- lame=3.100=h7b6447c_0
|
26 |
+
- lcms2=2.12=h3be6417_0
|
27 |
+
- ld_impl_linux-64=2.38=h1181459_1
|
28 |
+
- lerc=3.0=h295c915_0
|
29 |
+
- libdeflate=1.17=h5eee18b_1
|
30 |
+
- libffi=3.4.4=h6a678d5_0
|
31 |
+
- libgcc-ng=11.2.0=h1234567_1
|
32 |
+
- libgomp=11.2.0=h1234567_1
|
33 |
+
- libiconv=1.16=h7f8727e_2
|
34 |
+
- libidn2=2.3.4=h5eee18b_0
|
35 |
+
- libpng=1.6.39=h5eee18b_0
|
36 |
+
- libstdcxx-ng=11.2.0=h1234567_1
|
37 |
+
- libtasn1=4.19.0=h5eee18b_0
|
38 |
+
- libtiff=4.5.1=h6a678d5_0
|
39 |
+
- libunistring=0.9.10=h27cfd23_0
|
40 |
+
- libuuid=1.41.5=h5eee18b_0
|
41 |
+
- libwebp=1.3.2=h11a3e52_0
|
42 |
+
- libwebp-base=1.3.2=h5eee18b_0
|
43 |
+
- lz4-c=1.9.4=h6a678d5_0
|
44 |
+
- mkl=2023.1.0=h213fc3f_46343
|
45 |
+
- mkl-service=2.4.0=py310h5eee18b_1
|
46 |
+
- mkl_fft=1.3.8=py310h5eee18b_0
|
47 |
+
- mkl_random=1.2.4=py310hdb19cb5_0
|
48 |
+
- ncurses=6.4=h6a678d5_0
|
49 |
+
- nettle=3.7.3=hbbd107a_1
|
50 |
+
- numpy=1.26.0=py310h5f9d8c6_0
|
51 |
+
- numpy-base=1.26.0=py310hb5e798b_0
|
52 |
+
- openh264=2.1.1=h4ff587b_0
|
53 |
+
- openjpeg=2.4.0=h3ad879b_0
|
54 |
+
- openssl=3.0.11=h7f8727e_2
|
55 |
+
- pillow=10.0.1=py310ha6cbd5a_0
|
56 |
+
- pip=23.3=py310h06a4308_0
|
57 |
+
- pycparser=2.21=pyhd3eb1b0_0
|
58 |
+
- pyopenssl=23.2.0=py310h06a4308_0
|
59 |
+
- pysocks=1.7.1=py310h06a4308_0
|
60 |
+
- python=3.10.13=h955ad1f_0
|
61 |
+
- pytorch=1.12.1=py3.10_cuda11.3_cudnn8.3.2_0
|
62 |
+
- pytorch-mutex=1.0=cuda
|
63 |
+
- readline=8.2=h5eee18b_0
|
64 |
+
- requests=2.31.0=py310h06a4308_0
|
65 |
+
- setuptools=68.0.0=py310h06a4308_0
|
66 |
+
- sqlite=3.41.2=h5eee18b_0
|
67 |
+
- tbb=2021.8.0=hdb19cb5_0
|
68 |
+
- tk=8.6.12=h1ccaba5_0
|
69 |
+
- torchaudio=0.12.1=py310_cu113
|
70 |
+
- torchvision=0.13.1=py310_cu113
|
71 |
+
- typing_extensions=4.7.1=py310h06a4308_0
|
72 |
+
- tzdata=2023c=h04d1e81_0
|
73 |
+
- urllib3=1.26.16=py310h06a4308_0
|
74 |
+
- wheel=0.41.2=py310h06a4308_0
|
75 |
+
- xz=5.4.2=h5eee18b_0
|
76 |
+
- zlib=1.2.13=h5eee18b_0
|
77 |
+
- zstd=1.5.5=hc292b87_0
|
78 |
+
- pip:
|
79 |
+
- accelerate==0.23.0
|
80 |
+
- accelerator==2023.7.18.dev1
|
81 |
+
- av==10.0.0
|
82 |
+
- beautifulsoup4==4.12.2
|
83 |
+
- bottle==0.12.25
|
84 |
+
- diffusers==0.21.4
|
85 |
+
- filelock==3.12.4
|
86 |
+
- fsspec==2023.9.2
|
87 |
+
- gdown==4.7.1
|
88 |
+
- huggingface-hub==0.17.3
|
89 |
+
- imageio==2.31.5
|
90 |
+
- importlib-metadata==6.8.0
|
91 |
+
- opencv-python==4.8.1.78
|
92 |
+
- packaging==23.2
|
93 |
+
- psutil==5.9.6
|
94 |
+
- pyyaml==6.0.1
|
95 |
+
- regex==2023.10.3
|
96 |
+
- safetensors==0.4.0
|
97 |
+
- setproctitle==1.3.3
|
98 |
+
- six==1.16.0
|
99 |
+
- soupsieve==2.5
|
100 |
+
- tokenizers==0.14.1
|
101 |
+
- tqdm==4.66.1
|
102 |
+
- transformers==4.34.1
|
103 |
+
- waitress==2.1.2
|
104 |
+
- zipp==3.17.0
|
105 |
+
- moviepy
|
106 |
+
- gradio
|
107 |
+
prefix: /home/yasjain/miniconda3/envs/llmgd-3
|
src/app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
from gradio_utils import *
|
5 |
+
|
6 |
+
def image_mod(image):
|
7 |
+
return image.rotate(45)
|
8 |
+
|
9 |
+
import os
|
10 |
+
|
11 |
+
import sys
|
12 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
13 |
+
|
14 |
+
|
15 |
+
import cv2
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
from models.pipelines import TextToVideoSDPipelineSpatialAware
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
NUM_POINTS = 3
|
28 |
+
NUM_FRAMES = 24
|
29 |
+
LARGE_BOX_SIZE = 256
|
30 |
+
|
31 |
+
|
32 |
+
def generate_video(pipe, overall_prompt, latents, get_latents=False, num_frames=24, num_inference_steps=50, fg_masks=None,
|
33 |
+
fg_masked_latents=None, frozen_steps=0, frozen_prompt=None, custom_attention_mask=None, fg_prompt=None):
|
34 |
+
|
35 |
+
video_frames = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, frozen_mask=fg_masks,
|
36 |
+
frozen_steps=frozen_steps, latents_all_input=fg_masked_latents, frozen_prompt=frozen_prompt, custom_attention_mask=custom_attention_mask, fg_prompt=fg_prompt,
|
37 |
+
make_attention_mask_2d=True, attention_mask_block_diagonal=True, height=320, width=576 ).frames
|
38 |
+
if get_latents:
|
39 |
+
video_latents = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, output_type="latent").frames
|
40 |
+
return video_frames, video_latents
|
41 |
+
|
42 |
+
return video_frames
|
43 |
+
|
44 |
+
|
45 |
+
# def generate_bb(prompt, fg_object, aspect_ratio, size, trajectory):
|
46 |
+
|
47 |
+
# if len(trajectory['layers']) < NUM_POINTS:
|
48 |
+
# raise ValueError
|
49 |
+
# final_canvas = torch.zeros((NUM_FRAMES,320,576))
|
50 |
+
|
51 |
+
# bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
|
52 |
+
# bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(bbox_size_x * 0.75) if aspect_ratio == "horizontal" else int(bbox_size_x * 1.25)
|
53 |
+
|
54 |
+
# bbox_coords = []
|
55 |
+
# # TODO add checks for trajectory
|
56 |
+
# for t in trajectory['layers']:
|
57 |
+
# bbox_coords.append([int(t.sum(axis=-2).argmax()*576/800), int(t.sum(axis=-1)[140:460].argmax())])
|
58 |
+
# bbox_coords = np.array(bbox_coords)
|
59 |
+
# # Make a list of length 24
|
60 |
+
# # Each element is a list of length 2
|
61 |
+
# # First element is the x coordinate of the bbox
|
62 |
+
# # Second element is a set of y coordinates of the bbox
|
63 |
+
# new_bbox_coords = [np.zeros(2,) for i in range(NUM_FRAMES)]
|
64 |
+
# divisor = int(NUM_FRAMES / (NUM_POINTS-1))
|
65 |
+
# for i in range(NUM_POINTS-1):
|
66 |
+
# new_bbox_coords[i*divisor] = bbox_coords[i]
|
67 |
+
# new_bbox_coords[-1] = bbox_coords[-1]
|
68 |
+
|
69 |
+
# # Linearly interpolate in the middle
|
70 |
+
# for i in range(NUM_POINTS-1):
|
71 |
+
# for j in range(1,divisor):
|
72 |
+
# new_bbox_coords[i*divisor+j][1] = int((bbox_coords[i][0] * (divisor-j) + bbox_coords[(i+1)][0] * j) / divisor)
|
73 |
+
# new_bbox_coords[i*divisor+j][0] = int((bbox_coords[i][1] * (divisor-j) + bbox_coords[(i+1)][1] * j) / divisor)
|
74 |
+
|
75 |
+
# for i in range(NUM_FRAMES):
|
76 |
+
# x = int(new_bbox_coords[i][0])
|
77 |
+
# y = int(new_bbox_coords[i][1])
|
78 |
+
# final_canvas[i,int(x-bbox_size_x/2):int(x+bbox_size_x/2), int(y-bbox_size_y/2):int(y+bbox_size_y/2)] = 1
|
79 |
+
|
80 |
+
# torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
+
# try:
|
82 |
+
# pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
83 |
+
# "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
84 |
+
# except:
|
85 |
+
# pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
86 |
+
# "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
87 |
+
|
88 |
+
# fg_masks = F.interpolate(final_canvas.unsqueeze(1), size=(40,72), mode="nearest").to(torch_device)
|
89 |
+
|
90 |
+
# # Save fg_masks as images
|
91 |
+
# for i in range(NUM_FRAMES):
|
92 |
+
# cv2.imwrite(f"./fg_masks/frame_{i:04d}.png", fg_masks[i,0].cpu().numpy()*255)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
# seed = 2
|
97 |
+
# random_latents = torch.randn([1, 4, NUM_FRAMES, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
|
98 |
+
# overall_prompt = f"A realistic lively {prompt}"
|
99 |
+
# video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40,
|
100 |
+
# fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=2, frozen_prompt=None, fg_prompt=fg_object)
|
101 |
+
|
102 |
+
# return create_video(video_frames,fps=8, type="final")
|
103 |
+
|
104 |
+
|
105 |
+
def interpolate_points(points, target_length):
|
106 |
+
print(points)
|
107 |
+
if len(points) == target_length:
|
108 |
+
return points
|
109 |
+
elif len(points) > target_length:
|
110 |
+
# Subsample the points uniformly
|
111 |
+
indices = np.round(np.linspace(0, len(points) - 1, target_length)).astype(int)
|
112 |
+
return [points[i] for i in indices]
|
113 |
+
else:
|
114 |
+
# Linearly interpolate to get more points
|
115 |
+
interpolated_points = []
|
116 |
+
num_points_to_add = target_length - len(points)
|
117 |
+
points_added_per_segment = num_points_to_add // (len(points) - 1)
|
118 |
+
|
119 |
+
for i in range(len(points) - 1):
|
120 |
+
start, end = points[i], points[i + 1]
|
121 |
+
interpolated_points.append(start)
|
122 |
+
for j in range(1, points_added_per_segment + 1):
|
123 |
+
fraction = j / (points_added_per_segment + 1)
|
124 |
+
new_point = np.round(start + fraction * (end - start))
|
125 |
+
interpolated_points.append(new_point)
|
126 |
+
|
127 |
+
# Add the last point
|
128 |
+
interpolated_points.append(points[-1])
|
129 |
+
|
130 |
+
# If there are still not enough points, add extras at the end
|
131 |
+
while len(interpolated_points) < target_length:
|
132 |
+
interpolated_points.append(points[-1])
|
133 |
+
|
134 |
+
return interpolated_points
|
135 |
+
|
136 |
+
|
137 |
+
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
138 |
+
|
139 |
+
|
140 |
+
try:
|
141 |
+
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
142 |
+
"cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
143 |
+
except:
|
144 |
+
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
145 |
+
"cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
146 |
+
|
147 |
+
|
148 |
+
def generate_bb(prompt, fg_object, aspect_ratio, size, motion_direction, trajectory):
|
149 |
+
|
150 |
+
# if len(trajectory['layers']) < NUM_POINTS:
|
151 |
+
# raise ValueError
|
152 |
+
final_canvas = torch.zeros((NUM_FRAMES,320//8,576//8))
|
153 |
+
|
154 |
+
bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
|
155 |
+
bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(bbox_size_x * 1.33) if aspect_ratio == "horizontal" else int(bbox_size_x * 0.75)
|
156 |
+
|
157 |
+
bbox_coords = []
|
158 |
+
|
159 |
+
image = trajectory['composite']
|
160 |
+
print(image.shape)
|
161 |
+
|
162 |
+
image = cv2.resize(image,(576, 320))
|
163 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
164 |
+
_, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY_INV)
|
165 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
166 |
+
|
167 |
+
|
168 |
+
# Process each contour
|
169 |
+
bbox_points = []
|
170 |
+
for contour in contours:
|
171 |
+
# You can approximate the contour to reduce the number of points
|
172 |
+
epsilon = 0.01 * cv2.arcLength(contour, True)
|
173 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
174 |
+
|
175 |
+
# Extracting and printing coordinates
|
176 |
+
for point in approx:
|
177 |
+
y, x = point.ravel()
|
178 |
+
if x in range(1,319) and y in range(1,575):
|
179 |
+
bbox_points.append([x,y])
|
180 |
+
|
181 |
+
if motion_direction in ['l2r', 'r2l']:
|
182 |
+
sorted_points = sorted(bbox_points, key=lambda x: x[1], reverse=motion_direction=="r2l")
|
183 |
+
else:
|
184 |
+
sorted_points = sorted(bbox_points, key=lambda x: x[0], reverse=motion_direction=="d2u")
|
185 |
+
target_length = 24
|
186 |
+
final_points = interpolate_points(np.array(sorted_points), target_length)
|
187 |
+
|
188 |
+
# Remember to reverse the co-ordinates
|
189 |
+
for i in range(NUM_FRAMES):
|
190 |
+
x = int(final_points[i][0])
|
191 |
+
y = int(final_points[i][1])
|
192 |
+
# Added Padding
|
193 |
+
final_canvas[i, max(int(x-bbox_size_x/2),16) // 8:min(int(x+bbox_size_x/2), 304)// 8,
|
194 |
+
max(int(y-bbox_size_y/2),16)// 8:min(int(y+bbox_size_y/2),560)// 8] = 1
|
195 |
+
|
196 |
+
|
197 |
+
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
198 |
+
fg_masks = final_canvas.unsqueeze(1).to(torch_device)
|
199 |
+
# # Save fg_masks as images
|
200 |
+
for i in range(NUM_FRAMES):
|
201 |
+
cv2.imwrite(f"./fg_masks/frame_{i:04d}.png", fg_masks[i,0].cpu().numpy()*255)
|
202 |
+
|
203 |
+
seed = 2
|
204 |
+
random_latents = torch.randn([1, 4, NUM_FRAMES, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
|
205 |
+
overall_prompt = f"A realistic lively {prompt}"
|
206 |
+
video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40,
|
207 |
+
fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=2, frozen_prompt=None, fg_prompt=fg_object)
|
208 |
+
|
209 |
+
return create_video(video_frames,fps=8, type="final")
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
demo = gr.Interface(
|
214 |
+
fn=generate_bb,
|
215 |
+
inputs=["text", "text", gr.Radio(choices=["square", "horizontal", "vertical"]), gr.Radio(choices=["small", "medium", "large"]), gr.Radio(choices=["l2r", "r2l", "u2d", "d2u"]),
|
216 |
+
gr.Paint(value={'background':np.zeros((320,576)), 'layers': [], 'composite': np.zeros((320,576))},type="numpy", image_mode="RGB", height=320, width=576)],
|
217 |
+
outputs=gr.Video(),
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
if __name__ == "__main__":
|
222 |
+
demo.launch(share=True)
|
src/app_modelscope.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models.pipelines import TextToVideoSDPipelineSpatialAware
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
import sys
|
6 |
+
import gradio as gr
|
7 |
+
import os
|
8 |
+
import numpy as np
|
9 |
+
from gradio_utils import *
|
10 |
+
|
11 |
+
|
12 |
+
def image_mod(image):
|
13 |
+
return image.rotate(45)
|
14 |
+
|
15 |
+
|
16 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
17 |
+
|
18 |
+
|
19 |
+
NUM_POINTS = 3
|
20 |
+
NUM_FRAMES = 16
|
21 |
+
LARGE_BOX_SIZE = 176
|
22 |
+
|
23 |
+
|
24 |
+
def generate_video(pipe, overall_prompt, latents, get_latents=False, num_frames=24, num_inference_steps=50, fg_masks=None,
|
25 |
+
fg_masked_latents=None, frozen_steps=0, frozen_prompt=None, custom_attention_mask=None, fg_prompt=None):
|
26 |
+
|
27 |
+
video_frames = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, frozen_mask=fg_masks,
|
28 |
+
frozen_steps=frozen_steps, latents_all_input=fg_masked_latents, frozen_prompt=frozen_prompt, custom_attention_mask=custom_attention_mask, fg_prompt=fg_prompt,
|
29 |
+
make_attention_mask_2d=True, attention_mask_block_diagonal=True, height=256, width=256).frames
|
30 |
+
if get_latents:
|
31 |
+
video_latents = pipe(overall_prompt, num_frames=num_frames, latents=latents,
|
32 |
+
num_inference_steps=num_inference_steps, output_type="latent").frames
|
33 |
+
return video_frames, video_latents
|
34 |
+
|
35 |
+
return video_frames
|
36 |
+
|
37 |
+
|
38 |
+
# def generate_bb(prompt, fg_object, aspect_ratio, size, trajectory):
|
39 |
+
|
40 |
+
# if len(trajectory['layers']) < NUM_POINTS:
|
41 |
+
# raise ValueError
|
42 |
+
# final_canvas = torch.zeros((NUM_FRAMES,320,576))
|
43 |
+
|
44 |
+
# bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
|
45 |
+
# bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(bbox_size_x * 0.75) if aspect_ratio == "horizontal" else int(bbox_size_x * 1.25)
|
46 |
+
|
47 |
+
# bbox_coords = []
|
48 |
+
# # TODO add checks for trajectory
|
49 |
+
# for t in trajectory['layers']:
|
50 |
+
# bbox_coords.append([int(t.sum(axis=-2).argmax()*576/800), int(t.sum(axis=-1)[140:460].argmax())])
|
51 |
+
# bbox_coords = np.array(bbox_coords)
|
52 |
+
# # Make a list of length 24
|
53 |
+
# # Each element is a list of length 2
|
54 |
+
# # First element is the x coordinate of the bbox
|
55 |
+
# # Second element is a set of y coordinates of the bbox
|
56 |
+
# new_bbox_coords = [np.zeros(2,) for i in range(NUM_FRAMES)]
|
57 |
+
# divisor = int(NUM_FRAMES / (NUM_POINTS-1))
|
58 |
+
# for i in range(NUM_POINTS-1):
|
59 |
+
# new_bbox_coords[i*divisor] = bbox_coords[i]
|
60 |
+
# new_bbox_coords[-1] = bbox_coords[-1]
|
61 |
+
|
62 |
+
# # Linearly interpolate in the middle
|
63 |
+
# for i in range(NUM_POINTS-1):
|
64 |
+
# for j in range(1,divisor):
|
65 |
+
# new_bbox_coords[i*divisor+j][1] = int((bbox_coords[i][0] * (divisor-j) + bbox_coords[(i+1)][0] * j) / divisor)
|
66 |
+
# new_bbox_coords[i*divisor+j][0] = int((bbox_coords[i][1] * (divisor-j) + bbox_coords[(i+1)][1] * j) / divisor)
|
67 |
+
|
68 |
+
# for i in range(NUM_FRAMES):
|
69 |
+
# x = int(new_bbox_coords[i][0])
|
70 |
+
# y = int(new_bbox_coords[i][1])
|
71 |
+
# final_canvas[i,int(x-bbox_size_x/2):int(x+bbox_size_x/2), int(y-bbox_size_y/2):int(y+bbox_size_y/2)] = 1
|
72 |
+
|
73 |
+
# torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
+
# try:
|
75 |
+
# pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
76 |
+
# "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
77 |
+
# except:
|
78 |
+
# pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
79 |
+
# "cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
80 |
+
|
81 |
+
# fg_masks = F.interpolate(final_canvas.unsqueeze(1), size=(40,72), mode="nearest").to(torch_device)
|
82 |
+
|
83 |
+
# # Save fg_masks as images
|
84 |
+
# for i in range(NUM_FRAMES):
|
85 |
+
# cv2.imwrite(f"./fg_masks/frame_{i:04d}.png", fg_masks[i,0].cpu().numpy()*255)
|
86 |
+
|
87 |
+
|
88 |
+
# seed = 2
|
89 |
+
# random_latents = torch.randn([1, 4, NUM_FRAMES, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
|
90 |
+
# overall_prompt = f"A realistic lively {prompt}"
|
91 |
+
# video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40,
|
92 |
+
# fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=2, frozen_prompt=None, fg_prompt=fg_object)
|
93 |
+
|
94 |
+
# return create_video(video_frames,fps=8, type="final")
|
95 |
+
|
96 |
+
|
97 |
+
def interpolate_points(points, target_length):
|
98 |
+
print(points)
|
99 |
+
if len(points) == target_length:
|
100 |
+
return points
|
101 |
+
elif len(points) > target_length:
|
102 |
+
# Subsample the points uniformly
|
103 |
+
indices = np.round(np.linspace(
|
104 |
+
0, len(points) - 1, target_length)).astype(int)
|
105 |
+
return [points[i] for i in indices]
|
106 |
+
else:
|
107 |
+
# Linearly interpolate to get more points
|
108 |
+
interpolated_points = []
|
109 |
+
num_points_to_add = target_length - len(points)
|
110 |
+
points_added_per_segment = num_points_to_add // (len(points) - 1)
|
111 |
+
|
112 |
+
for i in range(len(points) - 1):
|
113 |
+
start, end = points[i], points[i + 1]
|
114 |
+
interpolated_points.append(start)
|
115 |
+
for j in range(1, points_added_per_segment + 1):
|
116 |
+
fraction = j / (points_added_per_segment + 1)
|
117 |
+
new_point = np.round(start + fraction * (end - start))
|
118 |
+
interpolated_points.append(new_point)
|
119 |
+
|
120 |
+
# Add the last point
|
121 |
+
interpolated_points.append(points[-1])
|
122 |
+
|
123 |
+
# If there are still not enough points, add extras at the end
|
124 |
+
while len(interpolated_points) < target_length:
|
125 |
+
interpolated_points.append(points[-1])
|
126 |
+
|
127 |
+
return interpolated_points
|
128 |
+
|
129 |
+
|
130 |
+
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
131 |
+
|
132 |
+
|
133 |
+
try:
|
134 |
+
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
135 |
+
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
136 |
+
except:
|
137 |
+
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
138 |
+
"damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
139 |
+
|
140 |
+
|
141 |
+
def generate_bb(prompt, fg_object, aspect_ratio, size, motion_direction, seed, peekaboo_steps, trajectory):
|
142 |
+
|
143 |
+
if not set(fg_object.split()).issubset(set(prompt.split())):
|
144 |
+
raise gr.Error("Foreground object should be present in the video prompt")
|
145 |
+
# if len(trajectory['layers']) < NUM_POINTS:
|
146 |
+
# raise ValueError
|
147 |
+
final_canvas = torch.zeros((NUM_FRAMES, 256//8, 256//8))
|
148 |
+
|
149 |
+
bbox_size_x = LARGE_BOX_SIZE if size == "large" else int(
|
150 |
+
LARGE_BOX_SIZE * 0.75) if size == "medium" else LARGE_BOX_SIZE//2
|
151 |
+
bbox_size_y = bbox_size_x if aspect_ratio == "square" else int(
|
152 |
+
bbox_size_x * 1.33) if aspect_ratio == "horizontal" else int(bbox_size_x * 0.75)
|
153 |
+
|
154 |
+
bbox_coords = []
|
155 |
+
|
156 |
+
image = trajectory['composite']
|
157 |
+
print(image.shape)
|
158 |
+
|
159 |
+
image = cv2.resize(image, (256, 256))
|
160 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
161 |
+
_, thresh = cv2.threshold(gray, 30, 255, cv2.THRESH_BINARY_INV)
|
162 |
+
contours, _ = cv2.findContours(
|
163 |
+
thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
164 |
+
|
165 |
+
# Process each contour
|
166 |
+
bbox_points = []
|
167 |
+
for contour in contours:
|
168 |
+
# You can approximate the contour to reduce the number of points
|
169 |
+
epsilon = 0.01 * cv2.arcLength(contour, True)
|
170 |
+
approx = cv2.approxPolyDP(contour, epsilon, True)
|
171 |
+
|
172 |
+
# Extracting and printing coordinates
|
173 |
+
for point in approx:
|
174 |
+
y, x = point.ravel()
|
175 |
+
if x in range(1, 255) and y in range(1, 255):
|
176 |
+
# bbox_points.append([min(max(x, 32), 256-32),min(max(y, 32), 256-32)])
|
177 |
+
bbox_points.append([min(max(x, 0), 256), min(max(y, 0), 256)])
|
178 |
+
|
179 |
+
if motion_direction in ['Left to Right', 'Right to Left']:
|
180 |
+
sorted_points = sorted(
|
181 |
+
bbox_points, key=lambda x: x[1], reverse=motion_direction == "Right to Left")
|
182 |
+
else:
|
183 |
+
sorted_points = sorted(
|
184 |
+
bbox_points, key=lambda x: x[0], reverse=motion_direction == "Down to Up")
|
185 |
+
target_length = NUM_FRAMES
|
186 |
+
final_points = interpolate_points(np.array(sorted_points), target_length)
|
187 |
+
|
188 |
+
# Remember to reverse the co-ordinates
|
189 |
+
for i in range(NUM_FRAMES):
|
190 |
+
x = int(final_points[i][0])
|
191 |
+
y = int(final_points[i][1])
|
192 |
+
# Added Padding
|
193 |
+
final_canvas[i, max(int(x-bbox_size_x/2), 0) // 8:min(int(x+bbox_size_x/2), 256) // 8,
|
194 |
+
max(int(y-bbox_size_y/2), 0) // 8:min(int(y+bbox_size_y/2), 256) // 8] = 1
|
195 |
+
|
196 |
+
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
197 |
+
fg_masks = final_canvas.unsqueeze(1).to(torch_device)
|
198 |
+
# # Save fg_masks as images
|
199 |
+
for i in range(NUM_FRAMES):
|
200 |
+
cv2.imwrite(f"./fg_masks/frame_{i:04d}.png",
|
201 |
+
fg_masks[i, 0].cpu().numpy()*255)
|
202 |
+
|
203 |
+
seed = seed
|
204 |
+
random_latents = torch.randn([1, 4, NUM_FRAMES, 32, 32], generator=torch.Generator(
|
205 |
+
).manual_seed(seed)).to(torch_device)
|
206 |
+
overall_prompt = f"{prompt} , high quality"
|
207 |
+
video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40,
|
208 |
+
fg_masks=fg_masks, fg_masked_latents=None, frozen_steps=int(peekaboo_steps), frozen_prompt=None, fg_prompt=fg_object)
|
209 |
+
video_frames_original = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=NUM_FRAMES, num_inference_steps=40,
|
210 |
+
fg_masks=None, fg_masked_latents=None, frozen_steps=0, frozen_prompt=None, fg_prompt=None)
|
211 |
+
|
212 |
+
return create_video(video_frames_original, fps=8, type="modelscope"), create_video(video_frames, fps=8, type="final")
|
213 |
+
|
214 |
+
|
215 |
+
instructions_md = """
|
216 |
+
## Usage Instructions
|
217 |
+
- **Video Prompt**: Enter a brief description of the scene you want to generate.
|
218 |
+
- **Foreground Object**: Specify the main object in the video.
|
219 |
+
- **Aspect Ratio**: Choose the aspect ratio for the bounding box.
|
220 |
+
- **Size of the Bounding Box**: Select how large the foreground object should be.
|
221 |
+
- **Trajectory of the Bounding Box**: Draw the trajectory of the bounding box.
|
222 |
+
- **Motion Direction**: Indicate the direction of movement for the object.
|
223 |
+
- **Geek Settings**: Advanced settings for fine-tuning (optional).
|
224 |
+
- **Generate Video**: Click the button to create your video.
|
225 |
+
|
226 |
+
Feel free to experiment with different settings to see how they affect the output!
|
227 |
+
"""
|
228 |
+
|
229 |
+
with gr.Blocks() as demo:
|
230 |
+
gr.Markdown("""
|
231 |
+
# Peekaboo Demo
|
232 |
+
""")
|
233 |
+
with gr.Row():
|
234 |
+
video_1 = gr.Video(label="Original Modelscope Video")
|
235 |
+
video_2 = gr.Video(label="Peekaboo Video")
|
236 |
+
|
237 |
+
|
238 |
+
with gr.Accordion(label="Usage Instructions", open=False):
|
239 |
+
gr.Markdown(instructions_md)
|
240 |
+
with gr.Group("User Input"):
|
241 |
+
txt_1 = gr.Textbox(lines=1, label="Video Prompt", value="Darth Vader surfing on some waves")
|
242 |
+
txt_2 = gr.Textbox(lines=1, label="Foreground Object in the Video Prompt", value="Darth Vader")
|
243 |
+
aspect_ratio = gr.Radio(choices=["square", "horizontal", "vertical"], label="Aspect Ratio", value="vertical")
|
244 |
+
trajectory = gr.Paint(value={'background': np.zeros((256, 256)), 'layers': [], 'composite': np.zeros((256, 256))}, type="numpy", image_mode="RGB", height=256, width=256, label="Trajectory of the Bounding Box")
|
245 |
+
size = gr.Radio(choices=["small", "medium", "large"], label="Size of the Bounding Box", value="medium")
|
246 |
+
motion_direction = gr.Radio(choices=["Left to Right", "Right to Left", "Up to Down", "Down to Up"], label="Motion Direction", value="Left to Right")
|
247 |
+
|
248 |
+
with gr.Accordion(label="Geek settings", open=False):
|
249 |
+
with gr.Group():
|
250 |
+
seed = gr.Slider(0, 10, step=1., value=2, label="Seed")
|
251 |
+
peekaboo_steps = gr.Slider(0, 20, step=1., value=2, label="Number of Peekaboo Steps")
|
252 |
+
|
253 |
+
|
254 |
+
btn = gr.Button(value="Generate Video")
|
255 |
+
|
256 |
+
btn.click(generate_bb, inputs=[txt_1, txt_2, aspect_ratio, size, motion_direction, seed, peekaboo_steps, trajectory], outputs=[video_1, video_2])
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
|
261 |
+
if __name__ == "__main__":
|
262 |
+
demo.launch(share=True)
|
src/generation.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import sys
|
4 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
5 |
+
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
import tqdm
|
11 |
+
import torch
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import torchvision.io as vision_io
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
from models.pipelines import TextToVideoSDPipelineSpatialAware
|
18 |
+
from diffusers.utils import export_to_video
|
19 |
+
from PIL import Image
|
20 |
+
import torchvision
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
import warnings
|
25 |
+
warnings.filterwarnings("ignore")
|
26 |
+
|
27 |
+
OUTPUT_PATH = "/scr/demo"
|
28 |
+
|
29 |
+
def generate_video(pipe, overall_prompt, latents, get_latents=False, num_frames=24, num_inference_steps=50, fg_masks=None,
|
30 |
+
fg_masked_latents=None, frozen_steps=0, frozen_prompt=None, custom_attention_mask=None, fg_prompt=None):
|
31 |
+
|
32 |
+
video_frames = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, frozen_mask=fg_masks,
|
33 |
+
frozen_steps=frozen_steps, latents_all_input=fg_masked_latents, frozen_prompt=frozen_prompt, custom_attention_mask=custom_attention_mask, fg_prompt=fg_prompt,
|
34 |
+
make_attention_mask_2d=True, attention_mask_block_diagonal=True, height=320, width=576 ).frames
|
35 |
+
if get_latents:
|
36 |
+
video_latents = pipe(overall_prompt, num_frames=num_frames, latents=latents, num_inference_steps=num_inference_steps, output_type="latent").frames
|
37 |
+
return video_frames, video_latents
|
38 |
+
|
39 |
+
return video_frames
|
40 |
+
|
41 |
+
def save_frames(path):
|
42 |
+
video, audio, video_info = vision_io.read_video(f"{path}.mp4", pts_unit='sec')
|
43 |
+
|
44 |
+
# Number of frames
|
45 |
+
num_frames = video.size(0)
|
46 |
+
|
47 |
+
# Save each frame
|
48 |
+
os.makedirs(f"{path}", exist_ok=True)
|
49 |
+
for i in range(num_frames):
|
50 |
+
frame = video[i, :, :, :].numpy()
|
51 |
+
# Convert from C x H x W to H x W x C and from torch tensor to PIL Image
|
52 |
+
# frame = frame.permute(1, 2, 0).numpy()
|
53 |
+
img = Image.fromarray(frame.astype('uint8'))
|
54 |
+
img.save(f"{path}/frame_{i:04d}.png")
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
# Example usage
|
58 |
+
num_frames = 24
|
59 |
+
save_path = "video"
|
60 |
+
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
61 |
+
random_latents = torch.randn([1, 4, num_frames, 40, 72], generator=torch.Generator().manual_seed(2)).to(torch_device)
|
62 |
+
|
63 |
+
try:
|
64 |
+
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
65 |
+
"cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
66 |
+
except:
|
67 |
+
pipe = TextToVideoSDPipelineSpatialAware.from_pretrained(
|
68 |
+
"cerspense/zeroscope_v2_576w", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
69 |
+
|
70 |
+
# Generate video
|
71 |
+
|
72 |
+
|
73 |
+
bbox_mask = torch.zeros([24, 1, 40, 72], device=torch_device)
|
74 |
+
bbox_mask_2 = torch.zeros([24, 1, 40, 72], device=torch_device)
|
75 |
+
|
76 |
+
|
77 |
+
x_start = [10 + (i % 3) for i in range(num_frames)] # Simulating slight movement in x
|
78 |
+
x_end = [30 + (i % 3) for i in range(num_frames)] # Simulating slight movement in x
|
79 |
+
y_start = [10 for _ in range(num_frames)] # Static y start as the bear is seated/standing
|
80 |
+
y_end = [25 for _ in range(num_frames)] # Static y end, considering the size of the guitar
|
81 |
+
|
82 |
+
# Populate the bbox_mask tensor with ones where the bounding box is located
|
83 |
+
for i in range(num_frames):
|
84 |
+
bbox_mask[i, :, x_start[i]:x_end[i], y_start[i]:y_end[i]] = 1
|
85 |
+
bbox_mask_2[i, :, x_start[i]:x_end[i], 72-y_end[i]:72-y_start[i]] = 1
|
86 |
+
|
87 |
+
# fg_masks = bbox_mask
|
88 |
+
fg_masks = [bbox_mask, bbox_mask_2]
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
frozen_prompt = None
|
93 |
+
fg_masked_latents = None
|
94 |
+
fg_objects = []
|
95 |
+
prompts = []
|
96 |
+
prompts = [
|
97 |
+
(["cat", "goldfish bowl"], "A cat curiously staring at a goldfish bowl on a sunny windowsill."),
|
98 |
+
(["Superman", "Batman"], "Superman and Batman standing side by side in a heroic pose against a city skyline."),
|
99 |
+
(["rose", "daisy"], "A rose and a daisy in a small vase on a rustic wooden table."),
|
100 |
+
(["Harry Potter", "Hermione Granger"], "Harry Potter and Hermione Granger studying a magical map."),
|
101 |
+
(["butterfly", "dragonfly"], "A butterfly and a dragonfly resting on a leaf in a vibrant garden."),
|
102 |
+
(["teddy bear", "toy train"], "A teddy bear and a toy train on a child's playmat in a brightly lit room."),
|
103 |
+
(["frog", "turtle"], "A frog and a turtle sitting on a lily pad in a serene pond."),
|
104 |
+
(["Mickey Mouse", "Donald Duck"], "Mickey Mouse and Donald Duck enjoying a day at the beach, building a sandcastle."),
|
105 |
+
(["penguin", "seal"], "A penguin and a seal lounging on an iceberg in the Antarctic."),
|
106 |
+
(["lion", "zebra"], "A lion and a zebra peacefully drinking water from the same pond in the savannah.")
|
107 |
+
]
|
108 |
+
|
109 |
+
for fg_object, overall_prompt in prompts:
|
110 |
+
os.makedirs(f"{OUTPUT_PATH}/{save_path}/{overall_prompt}-mask", exist_ok=True)
|
111 |
+
try:
|
112 |
+
for i in range(num_frames):
|
113 |
+
torchvision.utils.save_image(fg_masks[0][i,0], f"{OUTPUT_PATH}/{save_path}/{overall_prompt}-mask/frame_{i:04d}_0.png")
|
114 |
+
torchvision.utils.save_image(fg_masks[1][i,0], f"{OUTPUT_PATH}/{save_path}/{overall_prompt}-mask/frame_{i:04d}_1.png")
|
115 |
+
except:
|
116 |
+
pass
|
117 |
+
print(fg_object, overall_prompt)
|
118 |
+
seed = 2
|
119 |
+
random_latents = torch.randn([1, 4, num_frames, 40, 72], generator=torch.Generator().manual_seed(seed)).to(torch_device)
|
120 |
+
for num_inference_steps in range(40,50,10):
|
121 |
+
for frozen_steps in [0, 1, 2]:
|
122 |
+
video_frames = generate_video(pipe, overall_prompt, random_latents, get_latents=False, num_frames=num_frames, num_inference_steps=num_inference_steps,
|
123 |
+
fg_masks=fg_masks, fg_masked_latents=fg_masked_latents, frozen_steps=frozen_steps, frozen_prompt=frozen_prompt, fg_prompt=fg_object)
|
124 |
+
# Save video frames
|
125 |
+
os.makedirs(f"{OUTPUT_PATH}/{save_path}/{overall_prompt}", exist_ok=True)
|
126 |
+
video_path = export_to_video(video_frames, f"{OUTPUT_PATH}/{save_path}/{overall_prompt}/{frozen_steps}_of_{num_inference_steps}_{seed}_masked.mp4")
|
127 |
+
save_frames(f"{OUTPUT_PATH}/{save_path}/{overall_prompt}/{frozen_steps}_of_{num_inference_steps}_{seed}_masked")
|
128 |
+
|
src/gradio_utils.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from moviepy.editor import *
|
7 |
+
|
8 |
+
def get_frames(video_in):
|
9 |
+
frames = []
|
10 |
+
#resize the video
|
11 |
+
clip = VideoFileClip(video_in)
|
12 |
+
|
13 |
+
#check fps
|
14 |
+
if clip.fps > 30:
|
15 |
+
print("vide rate is over 30, resetting to 30")
|
16 |
+
clip_resized = clip.resize(height=512)
|
17 |
+
clip_resized.write_videofile("video_resized.mp4", fps=30)
|
18 |
+
else:
|
19 |
+
print("video rate is OK")
|
20 |
+
clip_resized = clip.resize(height=512)
|
21 |
+
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
|
22 |
+
|
23 |
+
print("video resized to 512 height")
|
24 |
+
|
25 |
+
# Opens the Video file with CV2
|
26 |
+
cap= cv2.VideoCapture("video_resized.mp4")
|
27 |
+
|
28 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
29 |
+
print("video fps: " + str(fps))
|
30 |
+
i=0
|
31 |
+
while(cap.isOpened()):
|
32 |
+
ret, frame = cap.read()
|
33 |
+
if ret == False:
|
34 |
+
break
|
35 |
+
cv2.imwrite('kang'+str(i)+'.jpg',frame)
|
36 |
+
frames.append('kang'+str(i)+'.jpg')
|
37 |
+
i+=1
|
38 |
+
|
39 |
+
cap.release()
|
40 |
+
cv2.destroyAllWindows()
|
41 |
+
print("broke the video into frames")
|
42 |
+
|
43 |
+
return frames, fps
|
44 |
+
|
45 |
+
|
46 |
+
def convert(gif):
|
47 |
+
if gif != None:
|
48 |
+
clip = VideoFileClip(gif.name)
|
49 |
+
clip.write_videofile("my_gif_video.mp4")
|
50 |
+
return "my_gif_video.mp4"
|
51 |
+
else:
|
52 |
+
pass
|
53 |
+
|
54 |
+
|
55 |
+
def create_video(frames, fps, type):
|
56 |
+
print("building video result")
|
57 |
+
clip = ImageSequenceClip(frames, fps=fps)
|
58 |
+
clip.write_videofile(type + "_result.mp4", fps=fps)
|
59 |
+
|
60 |
+
return type + "_result.mp4"
|
src/image_generation.py
ADDED
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
# Modified from: https://github.com/facebookresearch/detectron2/blob/master/demo/demo.py
|
4 |
+
from transformers import pipeline
|
5 |
+
import torchvision
|
6 |
+
from PIL import Image
|
7 |
+
from models.t2i_pipeline import StableDiffusionPipelineSpatialAware
|
8 |
+
import torchvision.io as vision_io
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torch
|
11 |
+
import tqdm
|
12 |
+
import numpy as np
|
13 |
+
import cv2
|
14 |
+
import warnings
|
15 |
+
import time
|
16 |
+
import tempfile
|
17 |
+
import argparse
|
18 |
+
import glob
|
19 |
+
import multiprocessing as mp
|
20 |
+
import os
|
21 |
+
import random
|
22 |
+
|
23 |
+
# fmt: off
|
24 |
+
import sys
|
25 |
+
sys.path.insert(1, os.path.join(sys.path[0], '..'))
|
26 |
+
# fmt: on
|
27 |
+
|
28 |
+
|
29 |
+
warnings.filterwarnings("ignore")
|
30 |
+
|
31 |
+
# constants
|
32 |
+
WINDOW_NAME = "demo"
|
33 |
+
|
34 |
+
|
35 |
+
def generate_image(pipe, overall_prompt, latents, get_latents=False, num_inference_steps=50, fg_masks=None,
|
36 |
+
fg_masked_latents=None, frozen_steps=0, frozen_prompt=None, custom_attention_mask=None, fg_prompt=None):
|
37 |
+
'''
|
38 |
+
Main function that calls the image diffusion model
|
39 |
+
latent: input_noise from where it starts the generation
|
40 |
+
get_latents: if True, returns the latents for each frame
|
41 |
+
'''
|
42 |
+
|
43 |
+
image = pipe(overall_prompt, latents=latents, num_inference_steps=num_inference_steps, frozen_mask=fg_masks,
|
44 |
+
frozen_steps=frozen_steps, latents_all_input=fg_masked_latents, frozen_prompt=frozen_prompt, custom_attention_mask=custom_attention_mask, output_type='pil',
|
45 |
+
fg_prompt=fg_prompt, make_attention_mask_2d=True, attention_mask_block_diagonal=True).images[0]
|
46 |
+
torch.save(image, "img.pt")
|
47 |
+
|
48 |
+
if get_latents:
|
49 |
+
video_latents = pipe(overall_prompt, latents=latents,
|
50 |
+
num_inference_steps=num_inference_steps, output_type="latent").images
|
51 |
+
torch.save(video_latents, "img_latents.pt")
|
52 |
+
return image, video_latents
|
53 |
+
|
54 |
+
return image
|
55 |
+
|
56 |
+
|
57 |
+
def save_frames(path):
|
58 |
+
video, audio, video_info = vision_io.read_video(
|
59 |
+
f"demo3/{path}.mp4", pts_unit='sec')
|
60 |
+
|
61 |
+
# Number of frames
|
62 |
+
num_frames = video.size(0)
|
63 |
+
|
64 |
+
# Save each frame
|
65 |
+
os.makedirs(f"demo3/{path}", exist_ok=True)
|
66 |
+
for i in range(num_frames):
|
67 |
+
frame = video[i, :, :, :].numpy()
|
68 |
+
# Convert from C x H x W to H x W x C and from torch tensor to PIL Image
|
69 |
+
# frame = frame.permute(1, 2, 0).numpy()
|
70 |
+
img = Image.fromarray(frame.astype('uint8'))
|
71 |
+
img.save(f"demo3/{path}/frame_{i:04d}.png")
|
72 |
+
|
73 |
+
|
74 |
+
def create_boxes():
|
75 |
+
img_width = 96
|
76 |
+
img_height = 96
|
77 |
+
|
78 |
+
# initialize bboxes list
|
79 |
+
sbboxes = []
|
80 |
+
|
81 |
+
# object dimensions
|
82 |
+
for object_size in [20, 30, 40, 50, 60]:
|
83 |
+
obj_width, obj_height = object_size, object_size
|
84 |
+
|
85 |
+
# starting position
|
86 |
+
start_x = 3
|
87 |
+
start_y = 4
|
88 |
+
|
89 |
+
# calculate total size occupied by the objects in the grid
|
90 |
+
total_obj_width = 3 * obj_width
|
91 |
+
total_obj_height = 3 * obj_height
|
92 |
+
|
93 |
+
# determine horizontal and vertical spacings
|
94 |
+
spacing_horizontal = (img_width - total_obj_width - start_x) // 2
|
95 |
+
spacing_vertical = (img_height - total_obj_height - start_y) // 2
|
96 |
+
|
97 |
+
for i in range(3):
|
98 |
+
for j in range(3):
|
99 |
+
x_start = start_x + i * (obj_width + spacing_horizontal)
|
100 |
+
y_start = start_y + j * (obj_height + spacing_vertical)
|
101 |
+
# Corrected to img_width to include the last pixel
|
102 |
+
x_end = min(x_start + obj_width, img_width)
|
103 |
+
# Corrected to img_height to include the last pixel
|
104 |
+
y_end = min(y_start + obj_height, img_height)
|
105 |
+
sbboxes.append([x_start, y_start, x_end, y_end])
|
106 |
+
|
107 |
+
mask_id = 0
|
108 |
+
masks_list = []
|
109 |
+
|
110 |
+
for sbbox in sbboxes:
|
111 |
+
smask = torch.zeros(1, 1, 96, 96)
|
112 |
+
smask[0, 0, sbbox[1]:sbbox[3], sbbox[0]:sbbox[2]] = 1.0
|
113 |
+
masks_list.append(smask)
|
114 |
+
# torchvision.utils.save_image(smask, f"{SAVE_DIR}/masks/mask_{mask_id}.png") # save masks as images
|
115 |
+
mask_id += 1
|
116 |
+
|
117 |
+
return masks_list
|
118 |
+
|
119 |
+
|
120 |
+
def objects_list():
|
121 |
+
objects_settings = [
|
122 |
+
("apple", "on a table"),
|
123 |
+
("ball", "in a park"),
|
124 |
+
("cat", "on a couch"),
|
125 |
+
("dog", "in a backyard"),
|
126 |
+
("elephant", "in a jungle"),
|
127 |
+
("fountain pen", "on a desk"),
|
128 |
+
("guitar", "on a stage"),
|
129 |
+
("helicopter", "in the sky"),
|
130 |
+
("island", "in the sea"),
|
131 |
+
("jar", "on a shelf"),
|
132 |
+
("kite", "in the sky"),
|
133 |
+
("lamp", "in a room"),
|
134 |
+
("motorbike", "on a road"),
|
135 |
+
("notebook", "on a table"),
|
136 |
+
("owl", "on a tree"),
|
137 |
+
("piano", "in a hall"),
|
138 |
+
("queen", "in a castle"),
|
139 |
+
("robot", "in a lab"),
|
140 |
+
("snake", "in a forest"),
|
141 |
+
("tent", "in the mountains"),
|
142 |
+
("umbrella", "on a beach"),
|
143 |
+
("violin", "in an orchestra"),
|
144 |
+
("wheel", "in a garage"),
|
145 |
+
("xylophone", "in a music class"),
|
146 |
+
("yacht", "in a marina"),
|
147 |
+
("zebra", "in a savannah"),
|
148 |
+
("aeroplane", "in the clouds"),
|
149 |
+
("bridge", "over a river"),
|
150 |
+
("computer", "in an office"),
|
151 |
+
("dragon", "in a cave"),
|
152 |
+
("egg", "in a nest"),
|
153 |
+
("flower", "in a garden"),
|
154 |
+
("globe", "in a library"),
|
155 |
+
("hat", "on a rack"),
|
156 |
+
("ice cube", "in a glass"),
|
157 |
+
("jewelry", "in a box"),
|
158 |
+
("kangaroo", "in a desert"),
|
159 |
+
("lion", "in a den"),
|
160 |
+
("mug", "on a counter"),
|
161 |
+
("nest", "on a branch"),
|
162 |
+
("octopus", "in the ocean"),
|
163 |
+
("parrot", "in a rainforest"),
|
164 |
+
("quilt", "on a bed"),
|
165 |
+
("rose", "in a vase"),
|
166 |
+
("ship", "in a dock"),
|
167 |
+
("train", "on the tracks"),
|
168 |
+
("utensils", "in a kitchen"),
|
169 |
+
("vase", "on a window sill"),
|
170 |
+
("watch", "in a store"),
|
171 |
+
("x-ray", "in a hospital"),
|
172 |
+
("yarn", "in a basket"),
|
173 |
+
("zeppelin", "above a city"),
|
174 |
+
]
|
175 |
+
objects_settings.extend([
|
176 |
+
("muffin", "on a bakery shelf"),
|
177 |
+
("notebook", "on a student's desk"),
|
178 |
+
("owl", "in a tree"),
|
179 |
+
("piano", "in a concert hall"),
|
180 |
+
("quill", "on parchment"),
|
181 |
+
("robot", "in a factory"),
|
182 |
+
("snake", "in the grass"),
|
183 |
+
("telescope", "in an observatory"),
|
184 |
+
("umbrella", "at the beach"),
|
185 |
+
("violin", "in an orchestra"),
|
186 |
+
("whale", "in the ocean"),
|
187 |
+
("xylophone", "in a music store"),
|
188 |
+
("yacht", "in a marina"),
|
189 |
+
("zebra", "on a savanna"),
|
190 |
+
|
191 |
+
# Kitchen items
|
192 |
+
("spoon", "in a drawer"),
|
193 |
+
("plate", "in a cupboard"),
|
194 |
+
("cup", "on a shelf"),
|
195 |
+
("frying pan", "on a stove"),
|
196 |
+
("jar", "in the refrigerator"),
|
197 |
+
|
198 |
+
# Office items
|
199 |
+
("computer", "in an office"),
|
200 |
+
("printer", "by a desk"),
|
201 |
+
("chair", "around a conference table"),
|
202 |
+
("lamp", "on a workbench"),
|
203 |
+
("calendar", "on a wall"),
|
204 |
+
|
205 |
+
# Outdoor items
|
206 |
+
("bicycle", "on a street"),
|
207 |
+
("tent", "in a campsite"),
|
208 |
+
("fire", "in a fireplace"),
|
209 |
+
("mountain", "in the distance"),
|
210 |
+
("river", "through the woods"),
|
211 |
+
|
212 |
+
|
213 |
+
# and so on ...
|
214 |
+
])
|
215 |
+
|
216 |
+
# To expedite the generation, you can combine themes and objects:
|
217 |
+
|
218 |
+
themes = [
|
219 |
+
("wild animals", ["tiger", "lion", "cheetah",
|
220 |
+
"giraffe", "hippopotamus"], "in the wild"),
|
221 |
+
("household items", ["sofa", "tv", "clock",
|
222 |
+
"vase", "photo frame"], "in a living room"),
|
223 |
+
("clothes", ["shirt", "pants", "shoes",
|
224 |
+
"hat", "jacket"], "in a wardrobe"),
|
225 |
+
("musical instruments", ["drum", "trumpet",
|
226 |
+
"harp", "saxophone", "tuba"], "in a band"),
|
227 |
+
("cosmic entities", ["planet", "star",
|
228 |
+
"comet", "nebula", "asteroid"], "in space"),
|
229 |
+
# ... add more themes
|
230 |
+
]
|
231 |
+
|
232 |
+
# Using the themes to extend our list
|
233 |
+
for theme_name, theme_objects, theme_location in themes:
|
234 |
+
for theme_object in theme_objects:
|
235 |
+
objects_settings.append((theme_object, theme_location))
|
236 |
+
|
237 |
+
# Sports equipment
|
238 |
+
objects_settings.extend([
|
239 |
+
("basketball", "on a court"),
|
240 |
+
("golf ball", "on a golf course"),
|
241 |
+
("tennis racket", "on a tennis court"),
|
242 |
+
("baseball bat", "in a stadium"),
|
243 |
+
("hockey stick", "on an ice rink"),
|
244 |
+
("football", "on a field"),
|
245 |
+
("skateboard", "in a skatepark"),
|
246 |
+
("boxing gloves", "in a boxing ring"),
|
247 |
+
("ski", "on a snowy slope"),
|
248 |
+
("surfboard", "on a beach shore"),
|
249 |
+
])
|
250 |
+
|
251 |
+
# Toys and games
|
252 |
+
objects_settings.extend([
|
253 |
+
("teddy bear", "on a child's bed"),
|
254 |
+
("doll", "in a toy store"),
|
255 |
+
("toy car", "on a carpet"),
|
256 |
+
("board game", "on a table"),
|
257 |
+
("yo-yo", "in a child's hand"),
|
258 |
+
("kite", "in the sky on a windy day"),
|
259 |
+
("Lego bricks", "on a construction table"),
|
260 |
+
("jigsaw puzzle", "partially completed"),
|
261 |
+
("rubik's cube", "on a shelf"),
|
262 |
+
("action figure", "on display"),
|
263 |
+
])
|
264 |
+
|
265 |
+
# Transportation
|
266 |
+
objects_settings.extend([
|
267 |
+
("bus", "at a bus stop"),
|
268 |
+
("motorcycle", "on a road"),
|
269 |
+
("helicopter", "landing on a pad"),
|
270 |
+
("scooter", "on a sidewalk"),
|
271 |
+
("train", "at a station"),
|
272 |
+
("bicycle", "parked by a post"),
|
273 |
+
("boat", "in a harbor"),
|
274 |
+
("tractor", "on a farm"),
|
275 |
+
("airplane", "taking off from a runway"),
|
276 |
+
("submarine", "below sea level"),
|
277 |
+
])
|
278 |
+
|
279 |
+
# Medieval theme
|
280 |
+
objects_settings.extend([
|
281 |
+
("castle", "on a hilltop"),
|
282 |
+
("knight", "riding a horse"),
|
283 |
+
("bow and arrow", "in an archery range"),
|
284 |
+
("crown", "in a treasure chest"),
|
285 |
+
("dragon", "flying over mountains"),
|
286 |
+
("shield", "next to a warrior"),
|
287 |
+
("dagger", "on a wooden table"),
|
288 |
+
("torch", "lighting a dark corridor"),
|
289 |
+
("scroll", "sealed with wax"),
|
290 |
+
("cauldron", "with bubbling potion"),
|
291 |
+
])
|
292 |
+
|
293 |
+
# Modern technology
|
294 |
+
objects_settings.extend([
|
295 |
+
("smartphone", "on a charger"),
|
296 |
+
("laptop", "in a cafe"),
|
297 |
+
("headphones", "around a neck"),
|
298 |
+
("camera", "on a tripod"),
|
299 |
+
("drone", "flying over a park"),
|
300 |
+
("USB stick", "plugged into a computer"),
|
301 |
+
("watch", "on a wrist"),
|
302 |
+
("microphone", "on a podcast desk"),
|
303 |
+
("tablet", "with a digital pen"),
|
304 |
+
("VR headset", "ready for gaming"),
|
305 |
+
])
|
306 |
+
|
307 |
+
# Nature
|
308 |
+
objects_settings.extend([
|
309 |
+
("tree", "in a forest"),
|
310 |
+
("flower", "in a garden"),
|
311 |
+
("mountain", "on a horizon"),
|
312 |
+
("cloud", "in a blue sky"),
|
313 |
+
("waterfall", "in a scenic location"),
|
314 |
+
("beach", "next to an ocean"),
|
315 |
+
("cactus", "in a desert"),
|
316 |
+
("volcano", "erupting with lava"),
|
317 |
+
("coral", "under the sea"),
|
318 |
+
("moon", "in a night sky"),
|
319 |
+
])
|
320 |
+
|
321 |
+
prompts = [f"A {obj} {setting}" for obj, setting in objects_settings]
|
322 |
+
|
323 |
+
return objects_settings
|
324 |
+
|
325 |
+
|
326 |
+
if __name__ == "__main__":
|
327 |
+
SAVE_DIR = "/scr/image/"
|
328 |
+
save_path = "img43-att_mask"
|
329 |
+
torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
330 |
+
random_latents = torch.randn(
|
331 |
+
[1, 4, 96, 96], generator=torch.Generator().manual_seed(1)).to(torch_device)
|
332 |
+
|
333 |
+
try:
|
334 |
+
pipe = StableDiffusionPipelineSpatialAware.from_pretrained(
|
335 |
+
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float, variant="fp32", cache_dir="/gscratch/scrubbed/anasery/").to(torch_device)
|
336 |
+
except:
|
337 |
+
pipe = StableDiffusionPipelineSpatialAware.from_pretrained(
|
338 |
+
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float, variant="fp32").to(torch_device)
|
339 |
+
|
340 |
+
fg_object = "apple" # fg object stores the object to be masked
|
341 |
+
# overall prompt stores the prompt
|
342 |
+
overall_prompt = f"An {fg_object} on plate"
|
343 |
+
os.makedirs(f"{SAVE_DIR}/{overall_prompt}", exist_ok=True)
|
344 |
+
|
345 |
+
masks_list = create_boxes()
|
346 |
+
|
347 |
+
# torch.save(f"{overall_prompt}+masked", "prompt.pt")
|
348 |
+
obj_settings = objects_list() # 166
|
349 |
+
for obj_setting in obj_settings[120:]:
|
350 |
+
fg_object = obj_setting[0]
|
351 |
+
overall_prompt = f"A {obj_setting[0]} {obj_setting[1]}"
|
352 |
+
print(overall_prompt)
|
353 |
+
|
354 |
+
# randomly select 10 numbers from range len of masks_list
|
355 |
+
selected_mask_ids = random.sample(range(len(masks_list)), 3)
|
356 |
+
for mask_id in selected_mask_ids:
|
357 |
+
os.makedirs(
|
358 |
+
f"{SAVE_DIR}/{overall_prompt}/mask{mask_id}", exist_ok=True)
|
359 |
+
torchvision.utils.save_image(
|
360 |
+
masks_list[mask_id][0][0], f"{SAVE_DIR}/{overall_prompt}/mask{mask_id}/mask.png")
|
361 |
+
for frozen_steps in range(0, 5):
|
362 |
+
img = generate_image(pipe, overall_prompt, random_latents, get_latents=False, num_inference_steps=50, fg_masks=masks_list[mask_id].to(
|
363 |
+
torch_device), fg_masked_latents=None, frozen_steps=frozen_steps, frozen_prompt=None, fg_prompt=fg_object)
|
364 |
+
|
365 |
+
img.save(
|
366 |
+
f"{SAVE_DIR}/{overall_prompt}/mask{mask_id}/{frozen_steps}.png")
|
src/make_image_grid.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
def create_grid(directory, save_path=None):
|
8 |
+
# Get list of image files in the directory
|
9 |
+
files = sorted([f for f in os.listdir(directory) if f.endswith('.png')])
|
10 |
+
|
11 |
+
# Assuming all images are the same size
|
12 |
+
img_sample = Image.open(os.path.join(directory, files[0]))
|
13 |
+
width, height = img_sample.size
|
14 |
+
|
15 |
+
# Calculate grid dimensions for 24 images
|
16 |
+
grid_width = width * 6 # 6 images in each row
|
17 |
+
grid_height = height * 4 # 4 rows
|
18 |
+
|
19 |
+
# Create new image for the grid
|
20 |
+
grid_img = Image.new('RGB', (grid_width, grid_height))
|
21 |
+
|
22 |
+
for idx, file in enumerate(files):
|
23 |
+
img = Image.open(os.path.join(directory, file))
|
24 |
+
x = idx % 6 * width # 6 images in each row
|
25 |
+
y = idx // 6 * height # 4 rows
|
26 |
+
grid_img.paste(img, (x, y))
|
27 |
+
|
28 |
+
if save_path:
|
29 |
+
grid_img.save(f'{save_path}/{directory.split("/")[-1]}_grid.png')
|
30 |
+
else:
|
31 |
+
grid_img.save(f'{directory}_grid.png')
|
32 |
+
|
33 |
+
|
34 |
+
def list_subdirectories(parent_directory):
|
35 |
+
# Regex pattern to match the subdirectory naming convention
|
36 |
+
pattern = re.compile(r"\d+_of_\d+_masked1")
|
37 |
+
|
38 |
+
# List all subdirectories
|
39 |
+
subdirs = [d for d in os.listdir(parent_directory) if os.path.isdir(os.path.join(parent_directory, d))]
|
40 |
+
|
41 |
+
# Filter subdirectories based on naming convention
|
42 |
+
matching_subdirs = [d for d in subdirs if pattern.match(d)]
|
43 |
+
|
44 |
+
return matching_subdirs
|
45 |
+
|
46 |
+
# List of directories
|
47 |
+
|
48 |
+
# for prompt in ["A cat walking in a park", "A dog running in a park", " A wooden barrel drifting on a river", "A kite flying in the sky"]:
|
49 |
+
# for prompt in ["A car driving on the road"]:
|
50 |
+
# try:
|
51 |
+
# directories = list_subdirectories(f"demo4/video41-att_mask/{prompt}")
|
52 |
+
# except FileNotFoundError:
|
53 |
+
# print(f"Directory not found: {prompt}")
|
54 |
+
# continue
|
55 |
+
# os.makedirs(f"demo4/{prompt}/consolidated_grids", exist_ok=True)
|
56 |
+
# for directory in tqdm.tqdm(directories):
|
57 |
+
# create_grid(os.path.join(f"demo4/video41-att_mask/{prompt}", directory), save_path=f"demo4/{prompt}/consolidated_grids")
|
src/models/__init__.py
ADDED
File without changes
|
src/models/attention.py
ADDED
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
21 |
+
from diffusers.models.activations import get_activation
|
22 |
+
from diffusers.models.embeddings import CombinedTimestepLabelEmbeddings
|
23 |
+
from diffusers.models.lora import LoRACompatibleLinear
|
24 |
+
|
25 |
+
from .attention_processor import Attention
|
26 |
+
|
27 |
+
import math
|
28 |
+
|
29 |
+
@maybe_allow_in_graph
|
30 |
+
class GatedSelfAttentionDense(nn.Module):
|
31 |
+
def __init__(self, query_dim, context_dim, n_heads, d_head):
|
32 |
+
super().__init__()
|
33 |
+
|
34 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
35 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
36 |
+
|
37 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
38 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
39 |
+
|
40 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
41 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
42 |
+
|
43 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
44 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
45 |
+
|
46 |
+
self.enabled = True
|
47 |
+
|
48 |
+
def forward(self, x, objs):
|
49 |
+
if not self.enabled:
|
50 |
+
return x
|
51 |
+
|
52 |
+
n_visual = x.shape[1]
|
53 |
+
objs = self.linear(objs)
|
54 |
+
|
55 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
56 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
57 |
+
|
58 |
+
return x
|
59 |
+
|
60 |
+
|
61 |
+
@maybe_allow_in_graph
|
62 |
+
class BasicTransformerBlock(nn.Module):
|
63 |
+
r"""
|
64 |
+
A basic Transformer block.
|
65 |
+
|
66 |
+
Parameters:
|
67 |
+
dim (`int`): The number of channels in the input and output.
|
68 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
69 |
+
attention_head_dim (`int`): The number of channels in each head.
|
70 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
71 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
72 |
+
only_cross_attention (`bool`, *optional*):
|
73 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
74 |
+
double_self_attention (`bool`, *optional*):
|
75 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
76 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
77 |
+
num_embeds_ada_norm (:
|
78 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
79 |
+
attention_bias (:
|
80 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
dim: int,
|
86 |
+
num_attention_heads: int,
|
87 |
+
attention_head_dim: int,
|
88 |
+
dropout=0.0,
|
89 |
+
cross_attention_dim: Optional[int] = None,
|
90 |
+
activation_fn: str = "geglu",
|
91 |
+
num_embeds_ada_norm: Optional[int] = None,
|
92 |
+
attention_bias: bool = False,
|
93 |
+
only_cross_attention: bool = False,
|
94 |
+
double_self_attention: bool = False,
|
95 |
+
upcast_attention: bool = False,
|
96 |
+
norm_elementwise_affine: bool = True,
|
97 |
+
norm_type: str = "layer_norm",
|
98 |
+
final_dropout: bool = False,
|
99 |
+
attention_type: str = "default",
|
100 |
+
):
|
101 |
+
super().__init__()
|
102 |
+
self.only_cross_attention = only_cross_attention
|
103 |
+
|
104 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
105 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
106 |
+
|
107 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
108 |
+
raise ValueError(
|
109 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
110 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
111 |
+
)
|
112 |
+
|
113 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
114 |
+
# 1. Self-Attn
|
115 |
+
if self.use_ada_layer_norm:
|
116 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
117 |
+
elif self.use_ada_layer_norm_zero:
|
118 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
119 |
+
else:
|
120 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
121 |
+
self.attn1 = Attention(
|
122 |
+
query_dim=dim,
|
123 |
+
heads=num_attention_heads,
|
124 |
+
dim_head=attention_head_dim,
|
125 |
+
dropout=dropout,
|
126 |
+
bias=attention_bias,
|
127 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
128 |
+
upcast_attention=upcast_attention,
|
129 |
+
)
|
130 |
+
|
131 |
+
# 2. Cross-Attn
|
132 |
+
if cross_attention_dim is not None or double_self_attention:
|
133 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
134 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
135 |
+
# the second cross attention block.
|
136 |
+
self.norm2 = (
|
137 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
138 |
+
if self.use_ada_layer_norm
|
139 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
140 |
+
)
|
141 |
+
self.attn2 = Attention(
|
142 |
+
query_dim=dim,
|
143 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
144 |
+
heads=num_attention_heads,
|
145 |
+
dim_head=attention_head_dim,
|
146 |
+
dropout=dropout,
|
147 |
+
bias=attention_bias,
|
148 |
+
upcast_attention=upcast_attention,
|
149 |
+
) # is self-attn if encoder_hidden_states is none
|
150 |
+
else:
|
151 |
+
self.norm2 = None
|
152 |
+
self.attn2 = None
|
153 |
+
|
154 |
+
# 3. Feed-forward
|
155 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
156 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
157 |
+
|
158 |
+
# 4. Fuser
|
159 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
160 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
161 |
+
|
162 |
+
# let chunk size default to None
|
163 |
+
self._chunk_size = None
|
164 |
+
self._chunk_dim = 0
|
165 |
+
|
166 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
167 |
+
# Sets chunk feed-forward
|
168 |
+
self._chunk_size = chunk_size
|
169 |
+
self._chunk_dim = dim
|
170 |
+
|
171 |
+
def forward(
|
172 |
+
self,
|
173 |
+
hidden_states: torch.FloatTensor,
|
174 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
175 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
176 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
177 |
+
timestep: Optional[torch.LongTensor] = None,
|
178 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
179 |
+
class_labels: Optional[torch.LongTensor] = None,
|
180 |
+
**kwargs,
|
181 |
+
):
|
182 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
183 |
+
|
184 |
+
if attention_mask is not None and not isinstance(attention_mask, list):
|
185 |
+
if attention_mask is not None and hidden_states.shape[1] != attention_mask.shape[-1]:
|
186 |
+
tmp = attention_mask.clone()
|
187 |
+
scale_factor = int(math.sqrt(attention_mask.shape[-1] // hidden_states.shape[1]))
|
188 |
+
try:
|
189 |
+
tmp = tmp.reshape(tmp.shape[0], 40, 72)
|
190 |
+
except:
|
191 |
+
try:
|
192 |
+
tmp = tmp.reshape(tmp.shape[0], 32, 32) # MSR-VTT
|
193 |
+
except:
|
194 |
+
tmp = tmp.reshape(tmp.shape[0], 96, 96)
|
195 |
+
tmp = tmp[:, ::scale_factor, ::scale_factor]
|
196 |
+
tmp = tmp.reshape(tmp.shape[0], 1, -1)
|
197 |
+
attention_mask = tmp
|
198 |
+
|
199 |
+
if attention_mask is not None:
|
200 |
+
tmp = attention_mask.clone()
|
201 |
+
tmp = tmp.view(tmp.shape[0], -1,1)/(-10000)
|
202 |
+
tmp = (1-tmp)
|
203 |
+
orig_attn_mask = attention_mask.clone()
|
204 |
+
else:
|
205 |
+
# tmp = 0
|
206 |
+
tmp =1
|
207 |
+
orig_attn_mask = None
|
208 |
+
|
209 |
+
if attention_mask is not None and 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True:
|
210 |
+
# We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0.
|
211 |
+
attention_mask_2d = attention_mask + attention_mask.permute(0,2,1)
|
212 |
+
# Get it back to original range. This step is optional tbh
|
213 |
+
attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attention_mask.dtype)
|
214 |
+
|
215 |
+
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
|
216 |
+
tmp_attention = torch.where(attention_mask < 0., 0., -10000.) # allow background
|
217 |
+
tmp_attention = tmp_attention + tmp_attention.permute(0,2,1)
|
218 |
+
tmp_attention = torch.where(tmp_attention < 0., -10000, 0)
|
219 |
+
attention_mask_2d = attention_mask_2d * tmp_attention
|
220 |
+
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask.dtype)
|
221 |
+
attention_mask = attention_mask_2d
|
222 |
+
|
223 |
+
|
224 |
+
# Multiple objects
|
225 |
+
elif attention_mask is not None and isinstance(attention_mask, list):
|
226 |
+
if hidden_states.shape[1] != attention_mask[0].shape[-1]:
|
227 |
+
new_attention_mask = []
|
228 |
+
for attn_mask in attention_mask:
|
229 |
+
tmp = attn_mask.clone()
|
230 |
+
scale_factor = int(math.sqrt(attn_mask.shape[-1] // hidden_states.shape[1]))
|
231 |
+
try:
|
232 |
+
tmp = tmp.reshape(tmp.shape[0], 40, 72)
|
233 |
+
except:
|
234 |
+
tmp = tmp.reshape(tmp.shape[0], 32, 32)
|
235 |
+
tmp = tmp[:, ::scale_factor, ::scale_factor]
|
236 |
+
tmp = tmp.reshape(tmp.shape[0], 1, -1)
|
237 |
+
new_attention_mask.append(tmp)
|
238 |
+
attention_mask = new_attention_mask
|
239 |
+
|
240 |
+
orig_attn_mask = []
|
241 |
+
for attn_mask in attention_mask:
|
242 |
+
tmp = attn_mask.clone()
|
243 |
+
|
244 |
+
tmp = tmp.view(tmp.shape[0], -1,1)/(-10000)
|
245 |
+
tmp = (1-tmp)
|
246 |
+
|
247 |
+
orig_attn_mask.append(attn_mask.clone())
|
248 |
+
|
249 |
+
|
250 |
+
if 'make_2d_attention_mask' in kwargs and kwargs['make_2d_attention_mask'] == True:
|
251 |
+
# We broadcast and take element wise AND. Note that addition is equivalent to AND here, since we are dealing with -10000 and 0.
|
252 |
+
attn_mask_2d = []
|
253 |
+
for attn_mask in attention_mask:
|
254 |
+
attention_mask_2d = attn_mask + attn_mask.permute(0,2,1)
|
255 |
+
# Get it back to original range. This step is optional tbh
|
256 |
+
attention_mask_2d = torch.where(attention_mask_2d < 0., -10000, 0).type(attn_mask.dtype)
|
257 |
+
attn_mask_2d.append(attention_mask_2d)
|
258 |
+
attention_mask_2d = torch.prod(torch.stack(attn_mask_2d, dim=0), dim=0)
|
259 |
+
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attn_mask.dtype)
|
260 |
+
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
|
261 |
+
tmp_attention = torch.where(torch.prod(torch.stack(attention_mask,dim=0),dim=0).abs() < 1., -10000., 0.) # Check this well
|
262 |
+
tmp_attention = tmp_attention + tmp_attention.permute(0,2,1)
|
263 |
+
tmp_attention = torch.where(tmp_attention < 0., -10000, 0)
|
264 |
+
attention_mask_2d = attention_mask_2d * tmp_attention
|
265 |
+
attention_mask_2d = torch.where(attention_mask_2d.abs() < 1.,0., -10000.).type(attention_mask_2d.dtype)
|
266 |
+
attention_mask = attention_mask_2d
|
267 |
+
|
268 |
+
else:
|
269 |
+
tmp = 1
|
270 |
+
orig_attn_mask = None
|
271 |
+
|
272 |
+
if self.use_ada_layer_norm:
|
273 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
274 |
+
elif self.use_ada_layer_norm_zero:
|
275 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
276 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
277 |
+
)
|
278 |
+
else:
|
279 |
+
norm_hidden_states = self.norm1(hidden_states)
|
280 |
+
|
281 |
+
# 1. Retrieve lora scale.
|
282 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
283 |
+
|
284 |
+
# 2. Prepare GLIGEN inputs
|
285 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
286 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
287 |
+
|
288 |
+
|
289 |
+
# breakpoint()
|
290 |
+
|
291 |
+
## self-attention amongst fg
|
292 |
+
attn_output = self.attn1(
|
293 |
+
norm_hidden_states, # + tmp,
|
294 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
295 |
+
attention_mask=attention_mask,
|
296 |
+
**cross_attention_kwargs,
|
297 |
+
)
|
298 |
+
|
299 |
+
|
300 |
+
if self.use_ada_layer_norm_zero:
|
301 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
302 |
+
hidden_states = attn_output + hidden_states
|
303 |
+
|
304 |
+
if attention_mask is not None:
|
305 |
+
tmp = 1-tmp
|
306 |
+
|
307 |
+
# 2.5 GLIGEN Control
|
308 |
+
if gligen_kwargs is not None:
|
309 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
310 |
+
# 2.5 ends
|
311 |
+
|
312 |
+
# 3. Cross-Attention
|
313 |
+
if self.attn2 is not None:
|
314 |
+
norm_hidden_states = (
|
315 |
+
self.norm2(hidden_states*tmp, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*tmp)
|
316 |
+
)
|
317 |
+
|
318 |
+
|
319 |
+
if encoder_attention_mask is None:
|
320 |
+
attn_output = self.attn2(
|
321 |
+
norm_hidden_states,
|
322 |
+
encoder_hidden_states=encoder_hidden_states,
|
323 |
+
attention_mask=encoder_attention_mask,
|
324 |
+
**cross_attention_kwargs,
|
325 |
+
)
|
326 |
+
|
327 |
+
if encoder_attention_mask is not None: # Encoder attention mask is not None
|
328 |
+
|
329 |
+
if 'block_diagonal_attention' in kwargs and kwargs['block_diagonal_attention'] == True:
|
330 |
+
|
331 |
+
if not isinstance(orig_attn_mask, list):
|
332 |
+
orig_attn_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype).to(orig_attn_mask.device)
|
333 |
+
encoder_attention_mask_2d = encoder_attention_mask + orig_attn_mask.permute(0,2,1)
|
334 |
+
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d < 0., -10000, 0).type(encoder_attention_mask.dtype)
|
335 |
+
|
336 |
+
inverted_encoder_attention_mask = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype)
|
337 |
+
inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token
|
338 |
+
|
339 |
+
inverted_orig_mask = torch.where(orig_attn_mask < 0., 0., -10000.).type(orig_attn_mask.dtype)
|
340 |
+
inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1)
|
341 |
+
|
342 |
+
encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d
|
343 |
+
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask.dtype)
|
344 |
+
|
345 |
+
encoder_attention_mask = encoder_attention_mask_2d
|
346 |
+
else:
|
347 |
+
orig_attn_mask = [torch.where(orig_attn_mask_ < 0., 0., -10000.).type(orig_attn_mask_.dtype).to(orig_attn_mask_.device) for orig_attn_mask_ in orig_attn_mask]
|
348 |
+
encoder_attention_mask_2d = [encoder_attention_mask_ + orig_attn_mask_.permute(0,2,1) for encoder_attention_mask_, orig_attn_mask_ in zip(encoder_attention_mask, orig_attn_mask)]
|
349 |
+
encoder_attention_mask_2d = [torch.where(encoder_attention_mask_2d_ < 0., -10000, 0).type(encoder_attention_mask_2d_.dtype) for encoder_attention_mask_2d_ in encoder_attention_mask_2d]
|
350 |
+
|
351 |
+
inverted_encoder_attention_mask = torch.where(torch.sum(torch.stack(encoder_attention_mask, dim=0),dim=0) < 0., 0., -10000.).type(encoder_attention_mask[0].dtype)
|
352 |
+
inverted_encoder_attention_mask[:,:,0] = -10000 # CLS token
|
353 |
+
|
354 |
+
inverted_orig_mask = torch.where(torch.sum(torch.stack(orig_attn_mask,dim=0),dim=0) < 0., 0., -10000.).type(orig_attn_mask[0].dtype)
|
355 |
+
inverted_encoder_attention_mask_2d = inverted_encoder_attention_mask + inverted_orig_mask.permute(0,2,1)
|
356 |
+
|
357 |
+
encoder_attention_mask_2d = torch.where(torch.sum(torch.stack(encoder_attention_mask_2d, dim=0), dim=0) < 0., -10000., 0.)
|
358 |
+
encoder_attention_mask_2d = encoder_attention_mask_2d * inverted_encoder_attention_mask_2d
|
359 |
+
encoder_attention_mask_2d = torch.where(encoder_attention_mask_2d.abs() < 1.,0., -10000.).type(encoder_attention_mask[0].dtype)
|
360 |
+
|
361 |
+
encoder_attention_mask = encoder_attention_mask_2d
|
362 |
+
|
363 |
+
norm_hidden_states = (
|
364 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
365 |
+
)
|
366 |
+
## cross-attention amongst bg
|
367 |
+
attn_output = self.attn2(
|
368 |
+
norm_hidden_states,
|
369 |
+
encoder_hidden_states=encoder_hidden_states,
|
370 |
+
attention_mask=encoder_attention_mask,
|
371 |
+
**cross_attention_kwargs,
|
372 |
+
)
|
373 |
+
|
374 |
+
del encoder_attention_mask_2d, inverted_encoder_attention_mask, inverted_encoder_attention_mask_2d, inverted_orig_mask, orig_attn_mask, attention_mask_2d, tmp_attention
|
375 |
+
torch.cuda.empty_cache()
|
376 |
+
|
377 |
+
hidden_states = attn_output + hidden_states
|
378 |
+
|
379 |
+
else:
|
380 |
+
norm_hidden_states2 = (
|
381 |
+
self.norm2(hidden_states*(1-tmp), timestep) if self.use_ada_layer_norm else self.norm2(hidden_states*(1-tmp))
|
382 |
+
)
|
383 |
+
encoder_attention_mask2 = torch.where(encoder_attention_mask < 0., 0., -10000.).type(encoder_attention_mask.dtype).to(encoder_attention_mask.device)
|
384 |
+
encoder_attention_mask2[:, :, 0] = -10000
|
385 |
+
attn_output2 = self.attn2(
|
386 |
+
norm_hidden_states2,
|
387 |
+
encoder_hidden_states=encoder_hidden_states,
|
388 |
+
attention_mask=encoder_attention_mask2,
|
389 |
+
**cross_attention_kwargs,
|
390 |
+
)
|
391 |
+
|
392 |
+
hidden_states = attn_output*tmp + attn_output2*(1-tmp)+ hidden_states
|
393 |
+
else:
|
394 |
+
hidden_states = attn_output*tmp + hidden_states
|
395 |
+
|
396 |
+
# 4. Feed-forward
|
397 |
+
norm_hidden_states = self.norm3(hidden_states)
|
398 |
+
|
399 |
+
if self.use_ada_layer_norm_zero:
|
400 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
401 |
+
|
402 |
+
if self._chunk_size is not None:
|
403 |
+
# "feed_forward_chunk_size" can be used to save memory
|
404 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
405 |
+
raise ValueError(
|
406 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
407 |
+
)
|
408 |
+
|
409 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
410 |
+
ff_output = torch.cat(
|
411 |
+
[
|
412 |
+
self.ff(hid_slice, scale=lora_scale)
|
413 |
+
for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)
|
414 |
+
],
|
415 |
+
dim=self._chunk_dim,
|
416 |
+
)
|
417 |
+
else:
|
418 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
419 |
+
|
420 |
+
if self.use_ada_layer_norm_zero:
|
421 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
422 |
+
|
423 |
+
hidden_states = ff_output + hidden_states
|
424 |
+
|
425 |
+
return hidden_states
|
426 |
+
|
427 |
+
class FeedForward(nn.Module):
|
428 |
+
r"""
|
429 |
+
A feed-forward layer.
|
430 |
+
|
431 |
+
Parameters:
|
432 |
+
dim (`int`): The number of channels in the input.
|
433 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
434 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
435 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
436 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
437 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
438 |
+
"""
|
439 |
+
|
440 |
+
def __init__(
|
441 |
+
self,
|
442 |
+
dim: int,
|
443 |
+
dim_out: Optional[int] = None,
|
444 |
+
mult: int = 4,
|
445 |
+
dropout: float = 0.0,
|
446 |
+
activation_fn: str = "geglu",
|
447 |
+
final_dropout: bool = False,
|
448 |
+
):
|
449 |
+
super().__init__()
|
450 |
+
inner_dim = int(dim * mult)
|
451 |
+
dim_out = dim_out if dim_out is not None else dim
|
452 |
+
|
453 |
+
if activation_fn == "gelu":
|
454 |
+
act_fn = GELU(dim, inner_dim)
|
455 |
+
if activation_fn == "gelu-approximate":
|
456 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh")
|
457 |
+
elif activation_fn == "geglu":
|
458 |
+
act_fn = GEGLU(dim, inner_dim)
|
459 |
+
elif activation_fn == "geglu-approximate":
|
460 |
+
act_fn = ApproximateGELU(dim, inner_dim)
|
461 |
+
|
462 |
+
self.net = nn.ModuleList([])
|
463 |
+
# project in
|
464 |
+
self.net.append(act_fn)
|
465 |
+
# project dropout
|
466 |
+
self.net.append(nn.Dropout(dropout))
|
467 |
+
# project out
|
468 |
+
self.net.append(LoRACompatibleLinear(inner_dim, dim_out))
|
469 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
470 |
+
if final_dropout:
|
471 |
+
self.net.append(nn.Dropout(dropout))
|
472 |
+
|
473 |
+
def forward(self, hidden_states, scale: float = 1.0):
|
474 |
+
for module in self.net:
|
475 |
+
if isinstance(module, (LoRACompatibleLinear, GEGLU)):
|
476 |
+
hidden_states = module(hidden_states, scale)
|
477 |
+
else:
|
478 |
+
hidden_states = module(hidden_states)
|
479 |
+
return hidden_states
|
480 |
+
|
481 |
+
|
482 |
+
class GELU(nn.Module):
|
483 |
+
r"""
|
484 |
+
GELU activation function with tanh approximation support with `approximate="tanh"`.
|
485 |
+
"""
|
486 |
+
|
487 |
+
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"):
|
488 |
+
super().__init__()
|
489 |
+
self.proj = nn.Linear(dim_in, dim_out)
|
490 |
+
self.approximate = approximate
|
491 |
+
|
492 |
+
def gelu(self, gate):
|
493 |
+
if gate.device.type != "mps":
|
494 |
+
return F.gelu(gate, approximate=self.approximate)
|
495 |
+
# mps: gelu is not implemented for float16
|
496 |
+
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
|
497 |
+
|
498 |
+
def forward(self, hidden_states):
|
499 |
+
hidden_states = self.proj(hidden_states)
|
500 |
+
hidden_states = self.gelu(hidden_states)
|
501 |
+
return hidden_states
|
502 |
+
|
503 |
+
|
504 |
+
class GEGLU(nn.Module):
|
505 |
+
r"""
|
506 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
507 |
+
|
508 |
+
Parameters:
|
509 |
+
dim_in (`int`): The number of channels in the input.
|
510 |
+
dim_out (`int`): The number of channels in the output.
|
511 |
+
"""
|
512 |
+
|
513 |
+
def __init__(self, dim_in: int, dim_out: int):
|
514 |
+
super().__init__()
|
515 |
+
self.proj = LoRACompatibleLinear(dim_in, dim_out * 2)
|
516 |
+
|
517 |
+
def gelu(self, gate):
|
518 |
+
if gate.device.type != "mps":
|
519 |
+
return F.gelu(gate)
|
520 |
+
# mps: gelu is not implemented for float16
|
521 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
522 |
+
|
523 |
+
def forward(self, hidden_states, scale: float = 1.0):
|
524 |
+
hidden_states, gate = self.proj(hidden_states, scale).chunk(2, dim=-1)
|
525 |
+
return hidden_states * self.gelu(gate)
|
526 |
+
|
527 |
+
|
528 |
+
class ApproximateGELU(nn.Module):
|
529 |
+
"""
|
530 |
+
The approximate form of Gaussian Error Linear Unit (GELU)
|
531 |
+
|
532 |
+
For more details, see section 2: https://arxiv.org/abs/1606.08415
|
533 |
+
"""
|
534 |
+
|
535 |
+
def __init__(self, dim_in: int, dim_out: int):
|
536 |
+
super().__init__()
|
537 |
+
self.proj = nn.Linear(dim_in, dim_out)
|
538 |
+
|
539 |
+
def forward(self, x):
|
540 |
+
x = self.proj(x)
|
541 |
+
return x * torch.sigmoid(1.702 * x)
|
542 |
+
|
543 |
+
|
544 |
+
class AdaLayerNorm(nn.Module):
|
545 |
+
"""
|
546 |
+
Norm layer modified to incorporate timestep embeddings.
|
547 |
+
"""
|
548 |
+
|
549 |
+
def __init__(self, embedding_dim, num_embeddings):
|
550 |
+
super().__init__()
|
551 |
+
self.emb = nn.Embedding(num_embeddings, embedding_dim)
|
552 |
+
self.silu = nn.SiLU()
|
553 |
+
self.linear = nn.Linear(embedding_dim, embedding_dim * 2)
|
554 |
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False)
|
555 |
+
|
556 |
+
def forward(self, x, timestep):
|
557 |
+
emb = self.linear(self.silu(self.emb(timestep)))
|
558 |
+
scale, shift = torch.chunk(emb, 2)
|
559 |
+
x = self.norm(x) * (1 + scale) + shift
|
560 |
+
return x
|
561 |
+
|
562 |
+
|
563 |
+
class AdaLayerNormZero(nn.Module):
|
564 |
+
"""
|
565 |
+
Norm layer adaptive layer norm zero (adaLN-Zero).
|
566 |
+
"""
|
567 |
+
|
568 |
+
def __init__(self, embedding_dim, num_embeddings):
|
569 |
+
super().__init__()
|
570 |
+
|
571 |
+
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim)
|
572 |
+
|
573 |
+
self.silu = nn.SiLU()
|
574 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
|
575 |
+
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
576 |
+
|
577 |
+
def forward(self, x, timestep, class_labels, hidden_dtype=None):
|
578 |
+
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype)))
|
579 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1)
|
580 |
+
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
581 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
582 |
+
|
583 |
+
|
584 |
+
class AdaGroupNorm(nn.Module):
|
585 |
+
"""
|
586 |
+
GroupNorm layer modified to incorporate timestep embeddings.
|
587 |
+
"""
|
588 |
+
|
589 |
+
def __init__(
|
590 |
+
self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5
|
591 |
+
):
|
592 |
+
super().__init__()
|
593 |
+
self.num_groups = num_groups
|
594 |
+
self.eps = eps
|
595 |
+
|
596 |
+
if act_fn is None:
|
597 |
+
self.act = None
|
598 |
+
else:
|
599 |
+
self.act = get_activation(act_fn)
|
600 |
+
|
601 |
+
self.linear = nn.Linear(embedding_dim, out_dim * 2)
|
602 |
+
|
603 |
+
def forward(self, x, emb):
|
604 |
+
if self.act:
|
605 |
+
emb = self.act(emb)
|
606 |
+
emb = self.linear(emb)
|
607 |
+
emb = emb[:, :, None, None]
|
608 |
+
scale, shift = emb.chunk(2, dim=1)
|
609 |
+
|
610 |
+
x = F.group_norm(x, self.num_groups, eps=self.eps)
|
611 |
+
x = x * (1 + scale) + shift
|
612 |
+
return x
|
src/models/attention_processor.py
ADDED
@@ -0,0 +1,1662 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from importlib import import_module
|
15 |
+
from typing import Callable, Optional, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.utils import deprecate, logging
|
22 |
+
from diffusers.utils.import_utils import is_xformers_available
|
23 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
24 |
+
from diffusers.models.lora import LoRACompatibleLinear, LoRALinearLayer
|
25 |
+
import torchvision
|
26 |
+
import math
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
29 |
+
|
30 |
+
|
31 |
+
if is_xformers_available():
|
32 |
+
import xformers
|
33 |
+
import xformers.ops
|
34 |
+
else:
|
35 |
+
xformers = None
|
36 |
+
|
37 |
+
|
38 |
+
@maybe_allow_in_graph
|
39 |
+
class Attention(nn.Module):
|
40 |
+
r"""
|
41 |
+
A cross attention layer.
|
42 |
+
|
43 |
+
Parameters:
|
44 |
+
query_dim (`int`): The number of channels in the query.
|
45 |
+
cross_attention_dim (`int`, *optional*):
|
46 |
+
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`.
|
47 |
+
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
48 |
+
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head.
|
49 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
50 |
+
bias (`bool`, *optional*, defaults to False):
|
51 |
+
Set to `True` for the query, key, and value linear layers to contain a bias parameter.
|
52 |
+
"""
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
query_dim: int,
|
57 |
+
cross_attention_dim: Optional[int] = None,
|
58 |
+
heads: int = 8,
|
59 |
+
dim_head: int = 64,
|
60 |
+
dropout: float = 0.0,
|
61 |
+
bias=False,
|
62 |
+
upcast_attention: bool = False,
|
63 |
+
upcast_softmax: bool = False,
|
64 |
+
cross_attention_norm: Optional[str] = None,
|
65 |
+
cross_attention_norm_num_groups: int = 32,
|
66 |
+
added_kv_proj_dim: Optional[int] = None,
|
67 |
+
norm_num_groups: Optional[int] = None,
|
68 |
+
spatial_norm_dim: Optional[int] = None,
|
69 |
+
out_bias: bool = True,
|
70 |
+
scale_qk: bool = True,
|
71 |
+
only_cross_attention: bool = False,
|
72 |
+
eps: float = 1e-5,
|
73 |
+
rescale_output_factor: float = 1.0,
|
74 |
+
residual_connection: bool = False,
|
75 |
+
_from_deprecated_attn_block=False,
|
76 |
+
processor: Optional["AttnProcessor"] = None,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
self.inner_dim = dim_head * heads
|
80 |
+
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
|
81 |
+
self.upcast_attention = upcast_attention
|
82 |
+
self.upcast_softmax = upcast_softmax
|
83 |
+
self.rescale_output_factor = rescale_output_factor
|
84 |
+
self.residual_connection = residual_connection
|
85 |
+
self.dropout = dropout
|
86 |
+
|
87 |
+
# we make use of this private variable to know whether this class is loaded
|
88 |
+
# with an deprecated state dict so that we can convert it on the fly
|
89 |
+
self._from_deprecated_attn_block = _from_deprecated_attn_block
|
90 |
+
|
91 |
+
self.scale_qk = scale_qk
|
92 |
+
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
93 |
+
|
94 |
+
self.heads = heads
|
95 |
+
# for slice_size > 0 the attention score computation
|
96 |
+
# is split across the batch axis to save memory
|
97 |
+
# You can set slice_size with `set_attention_slice`
|
98 |
+
self.sliceable_head_dim = heads
|
99 |
+
|
100 |
+
self.added_kv_proj_dim = added_kv_proj_dim
|
101 |
+
self.only_cross_attention = only_cross_attention
|
102 |
+
|
103 |
+
if self.added_kv_proj_dim is None and self.only_cross_attention:
|
104 |
+
raise ValueError(
|
105 |
+
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
|
106 |
+
)
|
107 |
+
|
108 |
+
if norm_num_groups is not None:
|
109 |
+
self.group_norm = nn.GroupNorm(num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True)
|
110 |
+
else:
|
111 |
+
self.group_norm = None
|
112 |
+
|
113 |
+
if spatial_norm_dim is not None:
|
114 |
+
self.spatial_norm = SpatialNorm(f_channels=query_dim, zq_channels=spatial_norm_dim)
|
115 |
+
else:
|
116 |
+
self.spatial_norm = None
|
117 |
+
|
118 |
+
if cross_attention_norm is None:
|
119 |
+
self.norm_cross = None
|
120 |
+
elif cross_attention_norm == "layer_norm":
|
121 |
+
self.norm_cross = nn.LayerNorm(self.cross_attention_dim)
|
122 |
+
elif cross_attention_norm == "group_norm":
|
123 |
+
if self.added_kv_proj_dim is not None:
|
124 |
+
# The given `encoder_hidden_states` are initially of shape
|
125 |
+
# (batch_size, seq_len, added_kv_proj_dim) before being projected
|
126 |
+
# to (batch_size, seq_len, cross_attention_dim). The norm is applied
|
127 |
+
# before the projection, so we need to use `added_kv_proj_dim` as
|
128 |
+
# the number of channels for the group norm.
|
129 |
+
norm_cross_num_channels = added_kv_proj_dim
|
130 |
+
else:
|
131 |
+
norm_cross_num_channels = self.cross_attention_dim
|
132 |
+
|
133 |
+
self.norm_cross = nn.GroupNorm(
|
134 |
+
num_channels=norm_cross_num_channels, num_groups=cross_attention_norm_num_groups, eps=1e-5, affine=True
|
135 |
+
)
|
136 |
+
else:
|
137 |
+
raise ValueError(
|
138 |
+
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'"
|
139 |
+
)
|
140 |
+
|
141 |
+
self.to_q = LoRACompatibleLinear(query_dim, self.inner_dim, bias=bias)
|
142 |
+
|
143 |
+
if not self.only_cross_attention:
|
144 |
+
# only relevant for the `AddedKVProcessor` classes
|
145 |
+
self.to_k = LoRACompatibleLinear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
146 |
+
self.to_v = LoRACompatibleLinear(self.cross_attention_dim, self.inner_dim, bias=bias)
|
147 |
+
else:
|
148 |
+
self.to_k = None
|
149 |
+
self.to_v = None
|
150 |
+
|
151 |
+
if self.added_kv_proj_dim is not None:
|
152 |
+
self.add_k_proj = LoRACompatibleLinear(added_kv_proj_dim, self.inner_dim)
|
153 |
+
self.add_v_proj = LoRACompatibleLinear(added_kv_proj_dim, self.inner_dim)
|
154 |
+
|
155 |
+
self.to_out = nn.ModuleList([])
|
156 |
+
self.to_out.append(LoRACompatibleLinear(self.inner_dim, query_dim, bias=out_bias))
|
157 |
+
self.to_out.append(nn.Dropout(dropout))
|
158 |
+
|
159 |
+
# set attention processor
|
160 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
161 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
162 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
163 |
+
if processor is None:
|
164 |
+
processor = (
|
165 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
166 |
+
)
|
167 |
+
self.set_processor(processor)
|
168 |
+
|
169 |
+
def set_use_memory_efficient_attention_xformers(
|
170 |
+
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None
|
171 |
+
):
|
172 |
+
is_lora = hasattr(self, "processor") and isinstance(
|
173 |
+
self.processor,
|
174 |
+
LORA_ATTENTION_PROCESSORS,
|
175 |
+
)
|
176 |
+
is_custom_diffusion = hasattr(self, "processor") and isinstance(
|
177 |
+
self.processor, (CustomDiffusionAttnProcessor, CustomDiffusionXFormersAttnProcessor)
|
178 |
+
)
|
179 |
+
is_added_kv_processor = hasattr(self, "processor") and isinstance(
|
180 |
+
self.processor,
|
181 |
+
(
|
182 |
+
AttnAddedKVProcessor,
|
183 |
+
AttnAddedKVProcessor2_0,
|
184 |
+
SlicedAttnAddedKVProcessor,
|
185 |
+
XFormersAttnAddedKVProcessor,
|
186 |
+
LoRAAttnAddedKVProcessor,
|
187 |
+
),
|
188 |
+
)
|
189 |
+
|
190 |
+
if use_memory_efficient_attention_xformers:
|
191 |
+
if is_added_kv_processor and (is_lora or is_custom_diffusion):
|
192 |
+
raise NotImplementedError(
|
193 |
+
f"Memory efficient attention is currently not supported for LoRA or custom diffusion for attention processor type {self.processor}"
|
194 |
+
)
|
195 |
+
if not is_xformers_available():
|
196 |
+
raise ModuleNotFoundError(
|
197 |
+
(
|
198 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
199 |
+
" xformers"
|
200 |
+
),
|
201 |
+
name="xformers",
|
202 |
+
)
|
203 |
+
elif not torch.cuda.is_available():
|
204 |
+
raise ValueError(
|
205 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
206 |
+
" only available for GPU "
|
207 |
+
)
|
208 |
+
else:
|
209 |
+
try:
|
210 |
+
# Make sure we can run the memory efficient attention
|
211 |
+
_ = xformers.ops.memory_efficient_attention(
|
212 |
+
torch.randn((1, 2, 40), device="cuda"),
|
213 |
+
torch.randn((1, 2, 40), device="cuda"),
|
214 |
+
torch.randn((1, 2, 40), device="cuda"),
|
215 |
+
)
|
216 |
+
except Exception as e:
|
217 |
+
raise e
|
218 |
+
|
219 |
+
if is_lora:
|
220 |
+
# TODO (sayakpaul): should we throw a warning if someone wants to use the xformers
|
221 |
+
# variant when using PT 2.0 now that we have LoRAAttnProcessor2_0?
|
222 |
+
processor = LoRAXFormersAttnProcessor(
|
223 |
+
hidden_size=self.processor.hidden_size,
|
224 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
225 |
+
rank=self.processor.rank,
|
226 |
+
attention_op=attention_op,
|
227 |
+
)
|
228 |
+
processor.load_state_dict(self.processor.state_dict())
|
229 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
230 |
+
elif is_custom_diffusion:
|
231 |
+
processor = CustomDiffusionXFormersAttnProcessor(
|
232 |
+
train_kv=self.processor.train_kv,
|
233 |
+
train_q_out=self.processor.train_q_out,
|
234 |
+
hidden_size=self.processor.hidden_size,
|
235 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
236 |
+
attention_op=attention_op,
|
237 |
+
)
|
238 |
+
processor.load_state_dict(self.processor.state_dict())
|
239 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
240 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
241 |
+
elif is_added_kv_processor:
|
242 |
+
# TODO(Patrick, Suraj, William) - currently xformers doesn't work for UnCLIP
|
243 |
+
# which uses this type of cross attention ONLY because the attention mask of format
|
244 |
+
# [0, ..., -10.000, ..., 0, ...,] is not supported
|
245 |
+
# throw warning
|
246 |
+
logger.info(
|
247 |
+
"Memory efficient attention with `xformers` might currently not work correctly if an attention mask is required for the attention operation."
|
248 |
+
)
|
249 |
+
processor = XFormersAttnAddedKVProcessor(attention_op=attention_op)
|
250 |
+
else:
|
251 |
+
processor = XFormersAttnProcessor(attention_op=attention_op)
|
252 |
+
else:
|
253 |
+
if is_lora:
|
254 |
+
attn_processor_class = (
|
255 |
+
LoRAAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else LoRAAttnProcessor
|
256 |
+
)
|
257 |
+
processor = attn_processor_class(
|
258 |
+
hidden_size=self.processor.hidden_size,
|
259 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
260 |
+
rank=self.processor.rank,
|
261 |
+
)
|
262 |
+
processor.load_state_dict(self.processor.state_dict())
|
263 |
+
processor.to(self.processor.to_q_lora.up.weight.device)
|
264 |
+
elif is_custom_diffusion:
|
265 |
+
processor = CustomDiffusionAttnProcessor(
|
266 |
+
train_kv=self.processor.train_kv,
|
267 |
+
train_q_out=self.processor.train_q_out,
|
268 |
+
hidden_size=self.processor.hidden_size,
|
269 |
+
cross_attention_dim=self.processor.cross_attention_dim,
|
270 |
+
)
|
271 |
+
processor.load_state_dict(self.processor.state_dict())
|
272 |
+
if hasattr(self.processor, "to_k_custom_diffusion"):
|
273 |
+
processor.to(self.processor.to_k_custom_diffusion.weight.device)
|
274 |
+
else:
|
275 |
+
# set attention processor
|
276 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
277 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
278 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
279 |
+
processor = (
|
280 |
+
AttnProcessor2_0()
|
281 |
+
if hasattr(F, "scaled_dot_product_attention") and self.scale_qk
|
282 |
+
else AttnProcessor()
|
283 |
+
)
|
284 |
+
|
285 |
+
self.set_processor(processor)
|
286 |
+
|
287 |
+
def set_attention_slice(self, slice_size):
|
288 |
+
if slice_size is not None and slice_size > self.sliceable_head_dim:
|
289 |
+
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.")
|
290 |
+
|
291 |
+
if slice_size is not None and self.added_kv_proj_dim is not None:
|
292 |
+
processor = SlicedAttnAddedKVProcessor(slice_size)
|
293 |
+
elif slice_size is not None:
|
294 |
+
processor = SlicedAttnProcessor(slice_size)
|
295 |
+
elif self.added_kv_proj_dim is not None:
|
296 |
+
processor = AttnAddedKVProcessor()
|
297 |
+
else:
|
298 |
+
# set attention processor
|
299 |
+
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses
|
300 |
+
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention
|
301 |
+
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1
|
302 |
+
processor = (
|
303 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") and self.scale_qk else AttnProcessor()
|
304 |
+
)
|
305 |
+
|
306 |
+
self.set_processor(processor)
|
307 |
+
|
308 |
+
def set_processor(self, processor: "AttnProcessor", _remove_lora=False):
|
309 |
+
if hasattr(self, "processor") and _remove_lora and self.to_q.lora_layer is not None:
|
310 |
+
deprecate(
|
311 |
+
"set_processor to offload LoRA",
|
312 |
+
"0.26.0",
|
313 |
+
"In detail, removing LoRA layers via calling `set_default_attn_processor` is deprecated. Please make sure to call `pipe.unload_lora_weights()` instead.",
|
314 |
+
)
|
315 |
+
# TODO(Patrick, Sayak) - this can be deprecated once PEFT LoRA integration is complete
|
316 |
+
# We need to remove all LoRA layers
|
317 |
+
# Don't forget to remove ALL `_remove_lora` from the codebase
|
318 |
+
for module in self.modules():
|
319 |
+
if hasattr(module, "set_lora_layer"):
|
320 |
+
module.set_lora_layer(None)
|
321 |
+
|
322 |
+
# if current processor is in `self._modules` and if passed `processor` is not, we need to
|
323 |
+
# pop `processor` from `self._modules`
|
324 |
+
if (
|
325 |
+
hasattr(self, "processor")
|
326 |
+
and isinstance(self.processor, torch.nn.Module)
|
327 |
+
and not isinstance(processor, torch.nn.Module)
|
328 |
+
):
|
329 |
+
logger.info(f"You are removing possibly trained weights of {self.processor} with {processor}")
|
330 |
+
self._modules.pop("processor")
|
331 |
+
|
332 |
+
self.processor = processor
|
333 |
+
|
334 |
+
def get_processor(self, return_deprecated_lora: bool = False) -> "AttentionProcessor":
|
335 |
+
if not return_deprecated_lora:
|
336 |
+
return self.processor
|
337 |
+
|
338 |
+
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible
|
339 |
+
# serialization format for LoRA Attention Processors. It should be deleted once the integration
|
340 |
+
# with PEFT is completed.
|
341 |
+
is_lora_activated = {
|
342 |
+
name: module.lora_layer is not None
|
343 |
+
for name, module in self.named_modules()
|
344 |
+
if hasattr(module, "lora_layer")
|
345 |
+
}
|
346 |
+
|
347 |
+
# 1. if no layer has a LoRA activated we can return the processor as usual
|
348 |
+
if not any(is_lora_activated.values()):
|
349 |
+
return self.processor
|
350 |
+
|
351 |
+
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj`
|
352 |
+
is_lora_activated.pop("add_k_proj", None)
|
353 |
+
is_lora_activated.pop("add_v_proj", None)
|
354 |
+
# 2. else it is not posssible that only some layers have LoRA activated
|
355 |
+
if not all(is_lora_activated.values()):
|
356 |
+
raise ValueError(
|
357 |
+
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}"
|
358 |
+
)
|
359 |
+
|
360 |
+
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor
|
361 |
+
non_lora_processor_cls_name = self.processor.__class__.__name__
|
362 |
+
lora_processor_cls = getattr(import_module(__name__), "LoRA" + non_lora_processor_cls_name)
|
363 |
+
|
364 |
+
hidden_size = self.inner_dim
|
365 |
+
|
366 |
+
# now create a LoRA attention processor from the LoRA layers
|
367 |
+
if lora_processor_cls in [LoRAAttnProcessor, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor]:
|
368 |
+
kwargs = {
|
369 |
+
"cross_attention_dim": self.cross_attention_dim,
|
370 |
+
"rank": self.to_q.lora_layer.rank,
|
371 |
+
"network_alpha": self.to_q.lora_layer.network_alpha,
|
372 |
+
"q_rank": self.to_q.lora_layer.rank,
|
373 |
+
"q_hidden_size": self.to_q.lora_layer.out_features,
|
374 |
+
"k_rank": self.to_k.lora_layer.rank,
|
375 |
+
"k_hidden_size": self.to_k.lora_layer.out_features,
|
376 |
+
"v_rank": self.to_v.lora_layer.rank,
|
377 |
+
"v_hidden_size": self.to_v.lora_layer.out_features,
|
378 |
+
"out_rank": self.to_out[0].lora_layer.rank,
|
379 |
+
"out_hidden_size": self.to_out[0].lora_layer.out_features,
|
380 |
+
}
|
381 |
+
|
382 |
+
if hasattr(self.processor, "attention_op"):
|
383 |
+
kwargs["attention_op"] = self.prcoessor.attention_op
|
384 |
+
|
385 |
+
lora_processor = lora_processor_cls(hidden_size, **kwargs)
|
386 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
387 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
388 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
389 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
390 |
+
elif lora_processor_cls == LoRAAttnAddedKVProcessor:
|
391 |
+
lora_processor = lora_processor_cls(
|
392 |
+
hidden_size,
|
393 |
+
cross_attention_dim=self.add_k_proj.weight.shape[0],
|
394 |
+
rank=self.to_q.lora_layer.rank,
|
395 |
+
network_alpha=self.to_q.lora_layer.network_alpha,
|
396 |
+
)
|
397 |
+
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict())
|
398 |
+
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict())
|
399 |
+
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict())
|
400 |
+
lora_processor.to_out_lora.load_state_dict(self.to_out[0].lora_layer.state_dict())
|
401 |
+
|
402 |
+
# only save if used
|
403 |
+
if self.add_k_proj.lora_layer is not None:
|
404 |
+
lora_processor.add_k_proj_lora.load_state_dict(self.add_k_proj.lora_layer.state_dict())
|
405 |
+
lora_processor.add_v_proj_lora.load_state_dict(self.add_v_proj.lora_layer.state_dict())
|
406 |
+
else:
|
407 |
+
lora_processor.add_k_proj_lora = None
|
408 |
+
lora_processor.add_v_proj_lora = None
|
409 |
+
else:
|
410 |
+
raise ValueError(f"{lora_processor_cls} does not exist.")
|
411 |
+
|
412 |
+
return lora_processor
|
413 |
+
|
414 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs):
|
415 |
+
# The `Attention` class can call different attention processors / attention functions
|
416 |
+
# here we simply pass along all tensors to the selected processor class
|
417 |
+
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
418 |
+
return self.processor(
|
419 |
+
self,
|
420 |
+
hidden_states,
|
421 |
+
encoder_hidden_states=encoder_hidden_states,
|
422 |
+
attention_mask=attention_mask,
|
423 |
+
**cross_attention_kwargs,
|
424 |
+
)
|
425 |
+
|
426 |
+
def batch_to_head_dim(self, tensor):
|
427 |
+
head_size = self.heads
|
428 |
+
batch_size, seq_len, dim = tensor.shape
|
429 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
430 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
431 |
+
return tensor
|
432 |
+
|
433 |
+
def head_to_batch_dim(self, tensor, out_dim=3):
|
434 |
+
head_size = self.heads
|
435 |
+
batch_size, seq_len, dim = tensor.shape
|
436 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
437 |
+
tensor = tensor.permute(0, 2, 1, 3)
|
438 |
+
|
439 |
+
if out_dim == 3:
|
440 |
+
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
|
441 |
+
|
442 |
+
return tensor
|
443 |
+
|
444 |
+
def get_attention_scores(self, query, key, attention_mask=None):
|
445 |
+
dtype = query.dtype
|
446 |
+
if self.upcast_attention:
|
447 |
+
query = query.float()
|
448 |
+
key = key.float()
|
449 |
+
|
450 |
+
if attention_mask is None:
|
451 |
+
baddbmm_input = torch.empty(
|
452 |
+
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
|
453 |
+
)
|
454 |
+
beta = 0
|
455 |
+
else:
|
456 |
+
# breakpoint()
|
457 |
+
baddbmm_input = attention_mask
|
458 |
+
beta = 1
|
459 |
+
|
460 |
+
attention_scores = torch.baddbmm(
|
461 |
+
baddbmm_input,
|
462 |
+
query,
|
463 |
+
key.transpose(-1, -2),
|
464 |
+
beta=beta,
|
465 |
+
alpha=self.scale,
|
466 |
+
)
|
467 |
+
del baddbmm_input
|
468 |
+
|
469 |
+
if self.upcast_softmax:
|
470 |
+
attention_scores = attention_scores.float()
|
471 |
+
|
472 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
473 |
+
del attention_scores
|
474 |
+
|
475 |
+
attention_probs = attention_probs.to(dtype)
|
476 |
+
|
477 |
+
return attention_probs
|
478 |
+
|
479 |
+
def prepare_attention_mask(self, attention_mask, target_length, batch_size=None, out_dim=3):
|
480 |
+
if batch_size is None:
|
481 |
+
deprecate(
|
482 |
+
"batch_size=None",
|
483 |
+
"0.22.0",
|
484 |
+
(
|
485 |
+
"Not passing the `batch_size` parameter to `prepare_attention_mask` can lead to incorrect"
|
486 |
+
" attention mask preparation and is deprecated behavior. Please make sure to pass `batch_size` to"
|
487 |
+
" `prepare_attention_mask` when preparing the attention_mask."
|
488 |
+
),
|
489 |
+
)
|
490 |
+
batch_size = 1
|
491 |
+
|
492 |
+
head_size = self.heads
|
493 |
+
if attention_mask is None:
|
494 |
+
return attention_mask
|
495 |
+
|
496 |
+
current_length: int = attention_mask.shape[-1]
|
497 |
+
if current_length != target_length:
|
498 |
+
if attention_mask.device.type == "mps":
|
499 |
+
# HACK: MPS: Does not support padding by greater than dimension of input tensor.
|
500 |
+
# Instead, we can manually construct the padding tensor.
|
501 |
+
padding_shape = (attention_mask.shape[0], attention_mask.shape[1], target_length)
|
502 |
+
padding = torch.zeros(padding_shape, dtype=attention_mask.dtype, device=attention_mask.device)
|
503 |
+
attention_mask = torch.cat([attention_mask, padding], dim=2)
|
504 |
+
else:
|
505 |
+
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask:
|
506 |
+
# we want to instead pad by (0, remaining_length), where remaining_length is:
|
507 |
+
# remaining_length: int = target_length - current_length
|
508 |
+
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding
|
509 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
510 |
+
|
511 |
+
if out_dim == 3:
|
512 |
+
if attention_mask.shape[0] < batch_size * head_size:
|
513 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=0)
|
514 |
+
elif out_dim == 4:
|
515 |
+
attention_mask = attention_mask.unsqueeze(1)
|
516 |
+
attention_mask = attention_mask.repeat_interleave(head_size, dim=1)
|
517 |
+
|
518 |
+
return attention_mask
|
519 |
+
|
520 |
+
def norm_encoder_hidden_states(self, encoder_hidden_states):
|
521 |
+
assert self.norm_cross is not None, "self.norm_cross must be defined to call self.norm_encoder_hidden_states"
|
522 |
+
|
523 |
+
if isinstance(self.norm_cross, nn.LayerNorm):
|
524 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
525 |
+
elif isinstance(self.norm_cross, nn.GroupNorm):
|
526 |
+
# Group norm norms along the channels dimension and expects
|
527 |
+
# input to be in the shape of (N, C, *). In this case, we want
|
528 |
+
# to norm along the hidden dimension, so we need to move
|
529 |
+
# (batch_size, sequence_length, hidden_size) ->
|
530 |
+
# (batch_size, hidden_size, sequence_length)
|
531 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
532 |
+
encoder_hidden_states = self.norm_cross(encoder_hidden_states)
|
533 |
+
encoder_hidden_states = encoder_hidden_states.transpose(1, 2)
|
534 |
+
else:
|
535 |
+
assert False
|
536 |
+
|
537 |
+
return encoder_hidden_states
|
538 |
+
|
539 |
+
|
540 |
+
class AttnProcessor:
|
541 |
+
r"""
|
542 |
+
Default processor for performing attention-related computations.
|
543 |
+
"""
|
544 |
+
|
545 |
+
def __call__(
|
546 |
+
self,
|
547 |
+
attn: Attention,
|
548 |
+
hidden_states,
|
549 |
+
encoder_hidden_states=None,
|
550 |
+
attention_mask=None,
|
551 |
+
temb=None,
|
552 |
+
scale=1.0,
|
553 |
+
):
|
554 |
+
residual = hidden_states
|
555 |
+
|
556 |
+
if attn.spatial_norm is not None:
|
557 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
558 |
+
|
559 |
+
input_ndim = hidden_states.ndim
|
560 |
+
|
561 |
+
if input_ndim == 4:
|
562 |
+
batch_size, channel, height, width = hidden_states.shape
|
563 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
564 |
+
|
565 |
+
batch_size, sequence_length, _ = (
|
566 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
567 |
+
)
|
568 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
569 |
+
|
570 |
+
if attn.group_norm is not None:
|
571 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
572 |
+
|
573 |
+
query = attn.to_q(hidden_states, scale=scale)
|
574 |
+
|
575 |
+
if encoder_hidden_states is None:
|
576 |
+
encoder_hidden_states = hidden_states
|
577 |
+
elif attn.norm_cross:
|
578 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
579 |
+
|
580 |
+
key = attn.to_k(encoder_hidden_states, scale=scale)
|
581 |
+
value = attn.to_v(encoder_hidden_states, scale=scale)
|
582 |
+
|
583 |
+
query = attn.head_to_batch_dim(query)
|
584 |
+
key = attn.head_to_batch_dim(key)
|
585 |
+
value = attn.head_to_batch_dim(value)
|
586 |
+
|
587 |
+
# try:
|
588 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
589 |
+
# except Exception as e:
|
590 |
+
# breakpoint()
|
591 |
+
hidden_states = torch.bmm(attention_probs, value)
|
592 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
593 |
+
|
594 |
+
|
595 |
+
# linear proj
|
596 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
597 |
+
# dropout
|
598 |
+
hidden_states = attn.to_out[1](hidden_states)
|
599 |
+
|
600 |
+
if input_ndim == 4:
|
601 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
602 |
+
|
603 |
+
if attn.residual_connection:
|
604 |
+
hidden_states = hidden_states + residual
|
605 |
+
|
606 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
607 |
+
|
608 |
+
return hidden_states
|
609 |
+
|
610 |
+
|
611 |
+
class CustomDiffusionAttnProcessor(nn.Module):
|
612 |
+
r"""
|
613 |
+
Processor for implementing attention for the Custom Diffusion method.
|
614 |
+
|
615 |
+
Args:
|
616 |
+
train_kv (`bool`, defaults to `True`):
|
617 |
+
Whether to newly train the key and value matrices corresponding to the text features.
|
618 |
+
train_q_out (`bool`, defaults to `True`):
|
619 |
+
Whether to newly train query matrices corresponding to the latent image features.
|
620 |
+
hidden_size (`int`, *optional*, defaults to `None`):
|
621 |
+
The hidden size of the attention layer.
|
622 |
+
cross_attention_dim (`int`, *optional*, defaults to `None`):
|
623 |
+
The number of channels in the `encoder_hidden_states`.
|
624 |
+
out_bias (`bool`, defaults to `True`):
|
625 |
+
Whether to include the bias parameter in `train_q_out`.
|
626 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
627 |
+
The dropout probability to use.
|
628 |
+
"""
|
629 |
+
|
630 |
+
def __init__(
|
631 |
+
self,
|
632 |
+
train_kv=True,
|
633 |
+
train_q_out=True,
|
634 |
+
hidden_size=None,
|
635 |
+
cross_attention_dim=None,
|
636 |
+
out_bias=True,
|
637 |
+
dropout=0.0,
|
638 |
+
):
|
639 |
+
super().__init__()
|
640 |
+
self.train_kv = train_kv
|
641 |
+
self.train_q_out = train_q_out
|
642 |
+
|
643 |
+
self.hidden_size = hidden_size
|
644 |
+
self.cross_attention_dim = cross_attention_dim
|
645 |
+
|
646 |
+
# `_custom_diffusion` id for easy serialization and loading.
|
647 |
+
if self.train_kv:
|
648 |
+
self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
649 |
+
self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
650 |
+
if self.train_q_out:
|
651 |
+
self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
|
652 |
+
self.to_out_custom_diffusion = nn.ModuleList([])
|
653 |
+
self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
|
654 |
+
self.to_out_custom_diffusion.append(nn.Dropout(dropout))
|
655 |
+
|
656 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
657 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
658 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
659 |
+
if self.train_q_out:
|
660 |
+
query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
|
661 |
+
else:
|
662 |
+
query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
|
663 |
+
|
664 |
+
if encoder_hidden_states is None:
|
665 |
+
crossattn = False
|
666 |
+
encoder_hidden_states = hidden_states
|
667 |
+
else:
|
668 |
+
crossattn = True
|
669 |
+
if attn.norm_cross:
|
670 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
671 |
+
|
672 |
+
if self.train_kv:
|
673 |
+
key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
|
674 |
+
value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
|
675 |
+
key = key.to(attn.to_q.weight.dtype)
|
676 |
+
value = value.to(attn.to_q.weight.dtype)
|
677 |
+
else:
|
678 |
+
key = attn.to_k(encoder_hidden_states)
|
679 |
+
value = attn.to_v(encoder_hidden_states)
|
680 |
+
|
681 |
+
if crossattn:
|
682 |
+
detach = torch.ones_like(key)
|
683 |
+
detach[:, :1, :] = detach[:, :1, :] * 0.0
|
684 |
+
key = detach * key + (1 - detach) * key.detach()
|
685 |
+
value = detach * value + (1 - detach) * value.detach()
|
686 |
+
|
687 |
+
query = attn.head_to_batch_dim(query)
|
688 |
+
key = attn.head_to_batch_dim(key)
|
689 |
+
value = attn.head_to_batch_dim(value)
|
690 |
+
|
691 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
692 |
+
hidden_states = torch.bmm(attention_probs, value)
|
693 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
694 |
+
|
695 |
+
if self.train_q_out:
|
696 |
+
# linear proj
|
697 |
+
hidden_states = self.to_out_custom_diffusion[0](hidden_states)
|
698 |
+
# dropout
|
699 |
+
hidden_states = self.to_out_custom_diffusion[1](hidden_states)
|
700 |
+
else:
|
701 |
+
# linear proj
|
702 |
+
hidden_states = attn.to_out[0](hidden_states)
|
703 |
+
# dropout
|
704 |
+
hidden_states = attn.to_out[1](hidden_states)
|
705 |
+
|
706 |
+
return hidden_states
|
707 |
+
|
708 |
+
|
709 |
+
class AttnAddedKVProcessor:
|
710 |
+
r"""
|
711 |
+
Processor for performing attention-related computations with extra learnable key and value matrices for the text
|
712 |
+
encoder.
|
713 |
+
"""
|
714 |
+
|
715 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
|
716 |
+
residual = hidden_states
|
717 |
+
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
|
718 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
719 |
+
|
720 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
721 |
+
|
722 |
+
if encoder_hidden_states is None:
|
723 |
+
encoder_hidden_states = hidden_states
|
724 |
+
elif attn.norm_cross:
|
725 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
726 |
+
|
727 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
728 |
+
|
729 |
+
query = attn.to_q(hidden_states, scale=scale)
|
730 |
+
query = attn.head_to_batch_dim(query)
|
731 |
+
|
732 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states, scale=scale)
|
733 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states, scale=scale)
|
734 |
+
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
|
735 |
+
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
|
736 |
+
|
737 |
+
if not attn.only_cross_attention:
|
738 |
+
key = attn.to_k(hidden_states, scale=scale)
|
739 |
+
value = attn.to_v(hidden_states, scale=scale)
|
740 |
+
key = attn.head_to_batch_dim(key)
|
741 |
+
value = attn.head_to_batch_dim(value)
|
742 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
|
743 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
|
744 |
+
else:
|
745 |
+
key = encoder_hidden_states_key_proj
|
746 |
+
value = encoder_hidden_states_value_proj
|
747 |
+
|
748 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
749 |
+
hidden_states = torch.bmm(attention_probs, value)
|
750 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
751 |
+
|
752 |
+
# linear proj
|
753 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
754 |
+
# dropout
|
755 |
+
hidden_states = attn.to_out[1](hidden_states)
|
756 |
+
|
757 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
|
758 |
+
hidden_states = hidden_states + residual
|
759 |
+
|
760 |
+
return hidden_states
|
761 |
+
|
762 |
+
|
763 |
+
class AttnAddedKVProcessor2_0:
|
764 |
+
r"""
|
765 |
+
Processor for performing scaled dot-product attention (enabled by default if you're using PyTorch 2.0), with extra
|
766 |
+
learnable key and value matrices for the text encoder.
|
767 |
+
"""
|
768 |
+
|
769 |
+
def __init__(self):
|
770 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
771 |
+
raise ImportError(
|
772 |
+
"AttnAddedKVProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
773 |
+
)
|
774 |
+
|
775 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, scale=1.0):
|
776 |
+
residual = hidden_states
|
777 |
+
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
|
778 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
779 |
+
|
780 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size, out_dim=4)
|
781 |
+
|
782 |
+
if encoder_hidden_states is None:
|
783 |
+
encoder_hidden_states = hidden_states
|
784 |
+
elif attn.norm_cross:
|
785 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
786 |
+
|
787 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
788 |
+
|
789 |
+
query = attn.to_q(hidden_states, scale=scale)
|
790 |
+
query = attn.head_to_batch_dim(query, out_dim=4)
|
791 |
+
|
792 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
793 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
794 |
+
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj, out_dim=4)
|
795 |
+
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj, out_dim=4)
|
796 |
+
|
797 |
+
if not attn.only_cross_attention:
|
798 |
+
key = attn.to_k(hidden_states, scale=scale)
|
799 |
+
value = attn.to_v(hidden_states, scale=scale)
|
800 |
+
key = attn.head_to_batch_dim(key, out_dim=4)
|
801 |
+
value = attn.head_to_batch_dim(value, out_dim=4)
|
802 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
803 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
804 |
+
else:
|
805 |
+
key = encoder_hidden_states_key_proj
|
806 |
+
value = encoder_hidden_states_value_proj
|
807 |
+
|
808 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
809 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
810 |
+
hidden_states = F.scaled_dot_product_attention(
|
811 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
812 |
+
)
|
813 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, residual.shape[1])
|
814 |
+
|
815 |
+
# linear proj
|
816 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
817 |
+
# dropout
|
818 |
+
hidden_states = attn.to_out[1](hidden_states)
|
819 |
+
|
820 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
|
821 |
+
hidden_states = hidden_states + residual
|
822 |
+
|
823 |
+
return hidden_states
|
824 |
+
|
825 |
+
|
826 |
+
class XFormersAttnAddedKVProcessor:
|
827 |
+
r"""
|
828 |
+
Processor for implementing memory efficient attention using xFormers.
|
829 |
+
|
830 |
+
Args:
|
831 |
+
attention_op (`Callable`, *optional*, defaults to `None`):
|
832 |
+
The base
|
833 |
+
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
|
834 |
+
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
|
835 |
+
operator.
|
836 |
+
"""
|
837 |
+
|
838 |
+
def __init__(self, attention_op: Optional[Callable] = None):
|
839 |
+
self.attention_op = attention_op
|
840 |
+
|
841 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
842 |
+
residual = hidden_states
|
843 |
+
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
|
844 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
845 |
+
|
846 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
847 |
+
|
848 |
+
if encoder_hidden_states is None:
|
849 |
+
encoder_hidden_states = hidden_states
|
850 |
+
elif attn.norm_cross:
|
851 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
852 |
+
|
853 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
854 |
+
|
855 |
+
query = attn.to_q(hidden_states)
|
856 |
+
query = attn.head_to_batch_dim(query)
|
857 |
+
|
858 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
859 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
860 |
+
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
|
861 |
+
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
|
862 |
+
|
863 |
+
if not attn.only_cross_attention:
|
864 |
+
key = attn.to_k(hidden_states)
|
865 |
+
value = attn.to_v(hidden_states)
|
866 |
+
key = attn.head_to_batch_dim(key)
|
867 |
+
value = attn.head_to_batch_dim(value)
|
868 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
|
869 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
|
870 |
+
else:
|
871 |
+
key = encoder_hidden_states_key_proj
|
872 |
+
value = encoder_hidden_states_value_proj
|
873 |
+
|
874 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
875 |
+
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
|
876 |
+
)
|
877 |
+
hidden_states = hidden_states.to(query.dtype)
|
878 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
879 |
+
|
880 |
+
# linear proj
|
881 |
+
hidden_states = attn.to_out[0](hidden_states)
|
882 |
+
# dropout
|
883 |
+
hidden_states = attn.to_out[1](hidden_states)
|
884 |
+
|
885 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
|
886 |
+
hidden_states = hidden_states + residual
|
887 |
+
|
888 |
+
return hidden_states
|
889 |
+
|
890 |
+
|
891 |
+
class XFormersAttnProcessor:
|
892 |
+
r"""
|
893 |
+
Processor for implementing memory efficient attention using xFormers.
|
894 |
+
|
895 |
+
Args:
|
896 |
+
attention_op (`Callable`, *optional*, defaults to `None`):
|
897 |
+
The base
|
898 |
+
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
|
899 |
+
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
|
900 |
+
operator.
|
901 |
+
"""
|
902 |
+
|
903 |
+
def __init__(self, attention_op: Optional[Callable] = None):
|
904 |
+
self.attention_op = attention_op
|
905 |
+
|
906 |
+
def __call__(
|
907 |
+
self,
|
908 |
+
attn: Attention,
|
909 |
+
hidden_states: torch.FloatTensor,
|
910 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
911 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
912 |
+
temb: Optional[torch.FloatTensor] = None,
|
913 |
+
scale: float = 1.0,
|
914 |
+
):
|
915 |
+
residual = hidden_states
|
916 |
+
|
917 |
+
if attn.spatial_norm is not None:
|
918 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
919 |
+
|
920 |
+
input_ndim = hidden_states.ndim
|
921 |
+
|
922 |
+
if input_ndim == 4:
|
923 |
+
batch_size, channel, height, width = hidden_states.shape
|
924 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
925 |
+
|
926 |
+
batch_size, key_tokens, _ = (
|
927 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
928 |
+
)
|
929 |
+
|
930 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
|
931 |
+
if attention_mask is not None:
|
932 |
+
# expand our mask's singleton query_tokens dimension:
|
933 |
+
# [batch*heads, 1, key_tokens] ->
|
934 |
+
# [batch*heads, query_tokens, key_tokens]
|
935 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
936 |
+
# [batch*heads, query_tokens, key_tokens]
|
937 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
938 |
+
_, query_tokens, _ = hidden_states.shape
|
939 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
940 |
+
|
941 |
+
if attn.group_norm is not None:
|
942 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
943 |
+
|
944 |
+
query = attn.to_q(hidden_states, scale=scale)
|
945 |
+
|
946 |
+
if encoder_hidden_states is None:
|
947 |
+
encoder_hidden_states = hidden_states
|
948 |
+
elif attn.norm_cross:
|
949 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
950 |
+
|
951 |
+
key = attn.to_k(encoder_hidden_states, scale=scale)
|
952 |
+
value = attn.to_v(encoder_hidden_states, scale=scale)
|
953 |
+
|
954 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
955 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
956 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
957 |
+
|
958 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
959 |
+
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
|
960 |
+
)
|
961 |
+
hidden_states = hidden_states.to(query.dtype)
|
962 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
963 |
+
|
964 |
+
# linear proj
|
965 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
966 |
+
# dropout
|
967 |
+
hidden_states = attn.to_out[1](hidden_states)
|
968 |
+
|
969 |
+
if input_ndim == 4:
|
970 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
971 |
+
|
972 |
+
if attn.residual_connection:
|
973 |
+
hidden_states = hidden_states + residual
|
974 |
+
|
975 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
976 |
+
|
977 |
+
return hidden_states
|
978 |
+
|
979 |
+
|
980 |
+
class AttnProcessor2_0:
|
981 |
+
r"""
|
982 |
+
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
983 |
+
"""
|
984 |
+
|
985 |
+
def __init__(self):
|
986 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
987 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
988 |
+
|
989 |
+
def __call__(
|
990 |
+
self,
|
991 |
+
attn: Attention,
|
992 |
+
hidden_states,
|
993 |
+
encoder_hidden_states=None,
|
994 |
+
attention_mask=None,
|
995 |
+
temb=None,
|
996 |
+
scale: float = 1.0,
|
997 |
+
):
|
998 |
+
residual = hidden_states
|
999 |
+
|
1000 |
+
if attn.spatial_norm is not None:
|
1001 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1002 |
+
|
1003 |
+
input_ndim = hidden_states.ndim
|
1004 |
+
|
1005 |
+
if input_ndim == 4:
|
1006 |
+
batch_size, channel, height, width = hidden_states.shape
|
1007 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1008 |
+
|
1009 |
+
batch_size, sequence_length, _ = (
|
1010 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
if attention_mask is not None:
|
1014 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1015 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
1016 |
+
# (batch, heads, source_length, target_length)
|
1017 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
1018 |
+
|
1019 |
+
if attn.group_norm is not None:
|
1020 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1021 |
+
|
1022 |
+
query = attn.to_q(hidden_states, scale=scale)
|
1023 |
+
|
1024 |
+
if encoder_hidden_states is None:
|
1025 |
+
encoder_hidden_states = hidden_states
|
1026 |
+
elif attn.norm_cross:
|
1027 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1028 |
+
|
1029 |
+
key = attn.to_k(encoder_hidden_states, scale=scale)
|
1030 |
+
value = attn.to_v(encoder_hidden_states, scale=scale)
|
1031 |
+
|
1032 |
+
inner_dim = key.shape[-1]
|
1033 |
+
head_dim = inner_dim // attn.heads
|
1034 |
+
|
1035 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1036 |
+
|
1037 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1038 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
1039 |
+
|
1040 |
+
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
1041 |
+
# TODO: add support for attn.scale when we move to Torch 2.1
|
1042 |
+
hidden_states = F.scaled_dot_product_attention(
|
1043 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
1047 |
+
hidden_states = hidden_states.to(query.dtype)
|
1048 |
+
|
1049 |
+
# linear proj
|
1050 |
+
hidden_states = attn.to_out[0](hidden_states, scale=scale)
|
1051 |
+
# dropout
|
1052 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1053 |
+
|
1054 |
+
if input_ndim == 4:
|
1055 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1056 |
+
|
1057 |
+
if attn.residual_connection:
|
1058 |
+
hidden_states = hidden_states + residual
|
1059 |
+
|
1060 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1061 |
+
|
1062 |
+
return hidden_states
|
1063 |
+
|
1064 |
+
|
1065 |
+
class CustomDiffusionXFormersAttnProcessor(nn.Module):
|
1066 |
+
r"""
|
1067 |
+
Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
|
1068 |
+
|
1069 |
+
Args:
|
1070 |
+
train_kv (`bool`, defaults to `True`):
|
1071 |
+
Whether to newly train the key and value matrices corresponding to the text features.
|
1072 |
+
train_q_out (`bool`, defaults to `True`):
|
1073 |
+
Whether to newly train query matrices corresponding to the latent image features.
|
1074 |
+
hidden_size (`int`, *optional*, defaults to `None`):
|
1075 |
+
The hidden size of the attention layer.
|
1076 |
+
cross_attention_dim (`int`, *optional*, defaults to `None`):
|
1077 |
+
The number of channels in the `encoder_hidden_states`.
|
1078 |
+
out_bias (`bool`, defaults to `True`):
|
1079 |
+
Whether to include the bias parameter in `train_q_out`.
|
1080 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
1081 |
+
The dropout probability to use.
|
1082 |
+
attention_op (`Callable`, *optional*, defaults to `None`):
|
1083 |
+
The base
|
1084 |
+
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use
|
1085 |
+
as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator.
|
1086 |
+
"""
|
1087 |
+
|
1088 |
+
def __init__(
|
1089 |
+
self,
|
1090 |
+
train_kv=True,
|
1091 |
+
train_q_out=False,
|
1092 |
+
hidden_size=None,
|
1093 |
+
cross_attention_dim=None,
|
1094 |
+
out_bias=True,
|
1095 |
+
dropout=0.0,
|
1096 |
+
attention_op: Optional[Callable] = None,
|
1097 |
+
):
|
1098 |
+
super().__init__()
|
1099 |
+
self.train_kv = train_kv
|
1100 |
+
self.train_q_out = train_q_out
|
1101 |
+
|
1102 |
+
self.hidden_size = hidden_size
|
1103 |
+
self.cross_attention_dim = cross_attention_dim
|
1104 |
+
self.attention_op = attention_op
|
1105 |
+
|
1106 |
+
# `_custom_diffusion` id for easy serialization and loading.
|
1107 |
+
if self.train_kv:
|
1108 |
+
self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
1109 |
+
self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
|
1110 |
+
if self.train_q_out:
|
1111 |
+
self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False)
|
1112 |
+
self.to_out_custom_diffusion = nn.ModuleList([])
|
1113 |
+
self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias))
|
1114 |
+
self.to_out_custom_diffusion.append(nn.Dropout(dropout))
|
1115 |
+
|
1116 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
1117 |
+
batch_size, sequence_length, _ = (
|
1118 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1119 |
+
)
|
1120 |
+
|
1121 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1122 |
+
|
1123 |
+
if self.train_q_out:
|
1124 |
+
query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype)
|
1125 |
+
else:
|
1126 |
+
query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype))
|
1127 |
+
|
1128 |
+
if encoder_hidden_states is None:
|
1129 |
+
crossattn = False
|
1130 |
+
encoder_hidden_states = hidden_states
|
1131 |
+
else:
|
1132 |
+
crossattn = True
|
1133 |
+
if attn.norm_cross:
|
1134 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1135 |
+
|
1136 |
+
if self.train_kv:
|
1137 |
+
key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype))
|
1138 |
+
value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype))
|
1139 |
+
key = key.to(attn.to_q.weight.dtype)
|
1140 |
+
value = value.to(attn.to_q.weight.dtype)
|
1141 |
+
else:
|
1142 |
+
key = attn.to_k(encoder_hidden_states)
|
1143 |
+
value = attn.to_v(encoder_hidden_states)
|
1144 |
+
|
1145 |
+
if crossattn:
|
1146 |
+
detach = torch.ones_like(key)
|
1147 |
+
detach[:, :1, :] = detach[:, :1, :] * 0.0
|
1148 |
+
key = detach * key + (1 - detach) * key.detach()
|
1149 |
+
value = detach * value + (1 - detach) * value.detach()
|
1150 |
+
|
1151 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
1152 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
1153 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
1154 |
+
|
1155 |
+
hidden_states = xformers.ops.memory_efficient_attention(
|
1156 |
+
query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale
|
1157 |
+
)
|
1158 |
+
hidden_states = hidden_states.to(query.dtype)
|
1159 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1160 |
+
|
1161 |
+
if self.train_q_out:
|
1162 |
+
# linear proj
|
1163 |
+
hidden_states = self.to_out_custom_diffusion[0](hidden_states)
|
1164 |
+
# dropout
|
1165 |
+
hidden_states = self.to_out_custom_diffusion[1](hidden_states)
|
1166 |
+
else:
|
1167 |
+
# linear proj
|
1168 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1169 |
+
# dropout
|
1170 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1171 |
+
return hidden_states
|
1172 |
+
|
1173 |
+
|
1174 |
+
class SlicedAttnProcessor:
|
1175 |
+
r"""
|
1176 |
+
Processor for implementing sliced attention.
|
1177 |
+
|
1178 |
+
Args:
|
1179 |
+
slice_size (`int`, *optional*):
|
1180 |
+
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
|
1181 |
+
`attention_head_dim` must be a multiple of the `slice_size`.
|
1182 |
+
"""
|
1183 |
+
|
1184 |
+
def __init__(self, slice_size):
|
1185 |
+
self.slice_size = slice_size
|
1186 |
+
|
1187 |
+
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
1188 |
+
residual = hidden_states
|
1189 |
+
|
1190 |
+
input_ndim = hidden_states.ndim
|
1191 |
+
|
1192 |
+
if input_ndim == 4:
|
1193 |
+
batch_size, channel, height, width = hidden_states.shape
|
1194 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
1195 |
+
|
1196 |
+
batch_size, sequence_length, _ = (
|
1197 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
1198 |
+
)
|
1199 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1200 |
+
|
1201 |
+
if attn.group_norm is not None:
|
1202 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1203 |
+
|
1204 |
+
query = attn.to_q(hidden_states)
|
1205 |
+
dim = query.shape[-1]
|
1206 |
+
query = attn.head_to_batch_dim(query)
|
1207 |
+
|
1208 |
+
if encoder_hidden_states is None:
|
1209 |
+
encoder_hidden_states = hidden_states
|
1210 |
+
elif attn.norm_cross:
|
1211 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1212 |
+
|
1213 |
+
key = attn.to_k(encoder_hidden_states)
|
1214 |
+
value = attn.to_v(encoder_hidden_states)
|
1215 |
+
key = attn.head_to_batch_dim(key)
|
1216 |
+
value = attn.head_to_batch_dim(value)
|
1217 |
+
|
1218 |
+
batch_size_attention, query_tokens, _ = query.shape
|
1219 |
+
hidden_states = torch.zeros(
|
1220 |
+
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
|
1221 |
+
)
|
1222 |
+
|
1223 |
+
for i in range(batch_size_attention // self.slice_size):
|
1224 |
+
start_idx = i * self.slice_size
|
1225 |
+
end_idx = (i + 1) * self.slice_size
|
1226 |
+
|
1227 |
+
query_slice = query[start_idx:end_idx]
|
1228 |
+
key_slice = key[start_idx:end_idx]
|
1229 |
+
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
|
1230 |
+
|
1231 |
+
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
|
1232 |
+
|
1233 |
+
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
|
1234 |
+
|
1235 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
1236 |
+
|
1237 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1238 |
+
|
1239 |
+
# linear proj
|
1240 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1241 |
+
# dropout
|
1242 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1243 |
+
|
1244 |
+
if input_ndim == 4:
|
1245 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1246 |
+
|
1247 |
+
if attn.residual_connection:
|
1248 |
+
hidden_states = hidden_states + residual
|
1249 |
+
|
1250 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1251 |
+
|
1252 |
+
return hidden_states
|
1253 |
+
|
1254 |
+
|
1255 |
+
class SlicedAttnAddedKVProcessor:
|
1256 |
+
r"""
|
1257 |
+
Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder.
|
1258 |
+
|
1259 |
+
Args:
|
1260 |
+
slice_size (`int`, *optional*):
|
1261 |
+
The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and
|
1262 |
+
`attention_head_dim` must be a multiple of the `slice_size`.
|
1263 |
+
"""
|
1264 |
+
|
1265 |
+
def __init__(self, slice_size):
|
1266 |
+
self.slice_size = slice_size
|
1267 |
+
|
1268 |
+
def __call__(self, attn: "Attention", hidden_states, encoder_hidden_states=None, attention_mask=None, temb=None):
|
1269 |
+
residual = hidden_states
|
1270 |
+
|
1271 |
+
if attn.spatial_norm is not None:
|
1272 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
1273 |
+
|
1274 |
+
hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
|
1275 |
+
|
1276 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
1277 |
+
|
1278 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
1279 |
+
|
1280 |
+
if encoder_hidden_states is None:
|
1281 |
+
encoder_hidden_states = hidden_states
|
1282 |
+
elif attn.norm_cross:
|
1283 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1284 |
+
|
1285 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
1286 |
+
|
1287 |
+
query = attn.to_q(hidden_states)
|
1288 |
+
dim = query.shape[-1]
|
1289 |
+
query = attn.head_to_batch_dim(query)
|
1290 |
+
|
1291 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
1292 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
1293 |
+
|
1294 |
+
encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj)
|
1295 |
+
encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
|
1296 |
+
|
1297 |
+
if not attn.only_cross_attention:
|
1298 |
+
key = attn.to_k(hidden_states)
|
1299 |
+
value = attn.to_v(hidden_states)
|
1300 |
+
key = attn.head_to_batch_dim(key)
|
1301 |
+
value = attn.head_to_batch_dim(value)
|
1302 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=1)
|
1303 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=1)
|
1304 |
+
else:
|
1305 |
+
key = encoder_hidden_states_key_proj
|
1306 |
+
value = encoder_hidden_states_value_proj
|
1307 |
+
|
1308 |
+
batch_size_attention, query_tokens, _ = query.shape
|
1309 |
+
hidden_states = torch.zeros(
|
1310 |
+
(batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype
|
1311 |
+
)
|
1312 |
+
|
1313 |
+
for i in range(batch_size_attention // self.slice_size):
|
1314 |
+
start_idx = i * self.slice_size
|
1315 |
+
end_idx = (i + 1) * self.slice_size
|
1316 |
+
|
1317 |
+
query_slice = query[start_idx:end_idx]
|
1318 |
+
key_slice = key[start_idx:end_idx]
|
1319 |
+
attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None
|
1320 |
+
|
1321 |
+
attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice)
|
1322 |
+
|
1323 |
+
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx])
|
1324 |
+
|
1325 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
1326 |
+
|
1327 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1328 |
+
|
1329 |
+
# linear proj
|
1330 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1331 |
+
# dropout
|
1332 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1333 |
+
|
1334 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape)
|
1335 |
+
hidden_states = hidden_states + residual
|
1336 |
+
|
1337 |
+
return hidden_states
|
1338 |
+
|
1339 |
+
|
1340 |
+
class SpatialNorm(nn.Module):
|
1341 |
+
"""
|
1342 |
+
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002
|
1343 |
+
"""
|
1344 |
+
|
1345 |
+
def __init__(
|
1346 |
+
self,
|
1347 |
+
f_channels,
|
1348 |
+
zq_channels,
|
1349 |
+
):
|
1350 |
+
super().__init__()
|
1351 |
+
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
|
1352 |
+
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
|
1353 |
+
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
|
1354 |
+
|
1355 |
+
def forward(self, f, zq):
|
1356 |
+
f_size = f.shape[-2:]
|
1357 |
+
zq = F.interpolate(zq, size=f_size, mode="nearest")
|
1358 |
+
norm_f = self.norm_layer(f)
|
1359 |
+
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
|
1360 |
+
return new_f
|
1361 |
+
|
1362 |
+
|
1363 |
+
## Deprecated
|
1364 |
+
class LoRAAttnProcessor(nn.Module):
|
1365 |
+
r"""
|
1366 |
+
Processor for implementing the LoRA attention mechanism.
|
1367 |
+
|
1368 |
+
Args:
|
1369 |
+
hidden_size (`int`, *optional*):
|
1370 |
+
The hidden size of the attention layer.
|
1371 |
+
cross_attention_dim (`int`, *optional*):
|
1372 |
+
The number of channels in the `encoder_hidden_states`.
|
1373 |
+
rank (`int`, defaults to 4):
|
1374 |
+
The dimension of the LoRA update matrices.
|
1375 |
+
network_alpha (`int`, *optional*):
|
1376 |
+
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
|
1377 |
+
"""
|
1378 |
+
|
1379 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, **kwargs):
|
1380 |
+
super().__init__()
|
1381 |
+
|
1382 |
+
self.hidden_size = hidden_size
|
1383 |
+
self.cross_attention_dim = cross_attention_dim
|
1384 |
+
self.rank = rank
|
1385 |
+
|
1386 |
+
q_rank = kwargs.pop("q_rank", None)
|
1387 |
+
q_hidden_size = kwargs.pop("q_hidden_size", None)
|
1388 |
+
q_rank = q_rank if q_rank is not None else rank
|
1389 |
+
q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size
|
1390 |
+
|
1391 |
+
v_rank = kwargs.pop("v_rank", None)
|
1392 |
+
v_hidden_size = kwargs.pop("v_hidden_size", None)
|
1393 |
+
v_rank = v_rank if v_rank is not None else rank
|
1394 |
+
v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size
|
1395 |
+
|
1396 |
+
out_rank = kwargs.pop("out_rank", None)
|
1397 |
+
out_hidden_size = kwargs.pop("out_hidden_size", None)
|
1398 |
+
out_rank = out_rank if out_rank is not None else rank
|
1399 |
+
out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size
|
1400 |
+
|
1401 |
+
self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
|
1402 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
1403 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
|
1404 |
+
self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)
|
1405 |
+
|
1406 |
+
def __call__(self, attn: Attention, hidden_states, *args, **kwargs):
|
1407 |
+
self_cls_name = self.__class__.__name__
|
1408 |
+
deprecate(
|
1409 |
+
self_cls_name,
|
1410 |
+
"0.26.0",
|
1411 |
+
(
|
1412 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
1413 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
1414 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
1415 |
+
),
|
1416 |
+
)
|
1417 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
1418 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
1419 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
1420 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
1421 |
+
|
1422 |
+
attn._modules.pop("processor")
|
1423 |
+
attn.processor = AttnProcessor()
|
1424 |
+
return attn.processor(attn, hidden_states, *args, **kwargs)
|
1425 |
+
|
1426 |
+
|
1427 |
+
class LoRAAttnProcessor2_0(nn.Module):
|
1428 |
+
r"""
|
1429 |
+
Processor for implementing the LoRA attention mechanism using PyTorch 2.0's memory-efficient scaled dot-product
|
1430 |
+
attention.
|
1431 |
+
|
1432 |
+
Args:
|
1433 |
+
hidden_size (`int`):
|
1434 |
+
The hidden size of the attention layer.
|
1435 |
+
cross_attention_dim (`int`, *optional*):
|
1436 |
+
The number of channels in the `encoder_hidden_states`.
|
1437 |
+
rank (`int`, defaults to 4):
|
1438 |
+
The dimension of the LoRA update matrices.
|
1439 |
+
network_alpha (`int`, *optional*):
|
1440 |
+
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
|
1441 |
+
"""
|
1442 |
+
|
1443 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None, **kwargs):
|
1444 |
+
super().__init__()
|
1445 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
1446 |
+
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
1447 |
+
|
1448 |
+
self.hidden_size = hidden_size
|
1449 |
+
self.cross_attention_dim = cross_attention_dim
|
1450 |
+
self.rank = rank
|
1451 |
+
|
1452 |
+
q_rank = kwargs.pop("q_rank", None)
|
1453 |
+
q_hidden_size = kwargs.pop("q_hidden_size", None)
|
1454 |
+
q_rank = q_rank if q_rank is not None else rank
|
1455 |
+
q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size
|
1456 |
+
|
1457 |
+
v_rank = kwargs.pop("v_rank", None)
|
1458 |
+
v_hidden_size = kwargs.pop("v_hidden_size", None)
|
1459 |
+
v_rank = v_rank if v_rank is not None else rank
|
1460 |
+
v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size
|
1461 |
+
|
1462 |
+
out_rank = kwargs.pop("out_rank", None)
|
1463 |
+
out_hidden_size = kwargs.pop("out_hidden_size", None)
|
1464 |
+
out_rank = out_rank if out_rank is not None else rank
|
1465 |
+
out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size
|
1466 |
+
|
1467 |
+
self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
|
1468 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
1469 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
|
1470 |
+
self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)
|
1471 |
+
|
1472 |
+
def __call__(self, attn: Attention, hidden_states, *args, **kwargs):
|
1473 |
+
self_cls_name = self.__class__.__name__
|
1474 |
+
deprecate(
|
1475 |
+
self_cls_name,
|
1476 |
+
"0.26.0",
|
1477 |
+
(
|
1478 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
1479 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
1480 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
1481 |
+
),
|
1482 |
+
)
|
1483 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
1484 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
1485 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
1486 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
1487 |
+
|
1488 |
+
attn._modules.pop("processor")
|
1489 |
+
attn.processor = AttnProcessor2_0()
|
1490 |
+
return attn.processor(attn, hidden_states, *args, **kwargs)
|
1491 |
+
|
1492 |
+
|
1493 |
+
class LoRAXFormersAttnProcessor(nn.Module):
|
1494 |
+
r"""
|
1495 |
+
Processor for implementing the LoRA attention mechanism with memory efficient attention using xFormers.
|
1496 |
+
|
1497 |
+
Args:
|
1498 |
+
hidden_size (`int`, *optional*):
|
1499 |
+
The hidden size of the attention layer.
|
1500 |
+
cross_attention_dim (`int`, *optional*):
|
1501 |
+
The number of channels in the `encoder_hidden_states`.
|
1502 |
+
rank (`int`, defaults to 4):
|
1503 |
+
The dimension of the LoRA update matrices.
|
1504 |
+
attention_op (`Callable`, *optional*, defaults to `None`):
|
1505 |
+
The base
|
1506 |
+
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
|
1507 |
+
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
|
1508 |
+
operator.
|
1509 |
+
network_alpha (`int`, *optional*):
|
1510 |
+
Equivalent to `alpha` but it's usage is specific to Kohya (A1111) style LoRAs.
|
1511 |
+
|
1512 |
+
"""
|
1513 |
+
|
1514 |
+
def __init__(
|
1515 |
+
self,
|
1516 |
+
hidden_size,
|
1517 |
+
cross_attention_dim,
|
1518 |
+
rank=4,
|
1519 |
+
attention_op: Optional[Callable] = None,
|
1520 |
+
network_alpha=None,
|
1521 |
+
**kwargs,
|
1522 |
+
):
|
1523 |
+
super().__init__()
|
1524 |
+
|
1525 |
+
self.hidden_size = hidden_size
|
1526 |
+
self.cross_attention_dim = cross_attention_dim
|
1527 |
+
self.rank = rank
|
1528 |
+
self.attention_op = attention_op
|
1529 |
+
|
1530 |
+
q_rank = kwargs.pop("q_rank", None)
|
1531 |
+
q_hidden_size = kwargs.pop("q_hidden_size", None)
|
1532 |
+
q_rank = q_rank if q_rank is not None else rank
|
1533 |
+
q_hidden_size = q_hidden_size if q_hidden_size is not None else hidden_size
|
1534 |
+
|
1535 |
+
v_rank = kwargs.pop("v_rank", None)
|
1536 |
+
v_hidden_size = kwargs.pop("v_hidden_size", None)
|
1537 |
+
v_rank = v_rank if v_rank is not None else rank
|
1538 |
+
v_hidden_size = v_hidden_size if v_hidden_size is not None else hidden_size
|
1539 |
+
|
1540 |
+
out_rank = kwargs.pop("out_rank", None)
|
1541 |
+
out_hidden_size = kwargs.pop("out_hidden_size", None)
|
1542 |
+
out_rank = out_rank if out_rank is not None else rank
|
1543 |
+
out_hidden_size = out_hidden_size if out_hidden_size is not None else hidden_size
|
1544 |
+
|
1545 |
+
self.to_q_lora = LoRALinearLayer(q_hidden_size, q_hidden_size, q_rank, network_alpha)
|
1546 |
+
self.to_k_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
1547 |
+
self.to_v_lora = LoRALinearLayer(cross_attention_dim or v_hidden_size, v_hidden_size, v_rank, network_alpha)
|
1548 |
+
self.to_out_lora = LoRALinearLayer(out_hidden_size, out_hidden_size, out_rank, network_alpha)
|
1549 |
+
|
1550 |
+
def __call__(self, attn: Attention, hidden_states, *args, **kwargs):
|
1551 |
+
self_cls_name = self.__class__.__name__
|
1552 |
+
deprecate(
|
1553 |
+
self_cls_name,
|
1554 |
+
"0.26.0",
|
1555 |
+
(
|
1556 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
1557 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
1558 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
1559 |
+
),
|
1560 |
+
)
|
1561 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
1562 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
1563 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
1564 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
1565 |
+
|
1566 |
+
attn._modules.pop("processor")
|
1567 |
+
attn.processor = XFormersAttnProcessor()
|
1568 |
+
return attn.processor(attn, hidden_states, *args, **kwargs)
|
1569 |
+
|
1570 |
+
|
1571 |
+
class LoRAAttnAddedKVProcessor(nn.Module):
|
1572 |
+
r"""
|
1573 |
+
Processor for implementing the LoRA attention mechanism with extra learnable key and value matrices for the text
|
1574 |
+
encoder.
|
1575 |
+
|
1576 |
+
Args:
|
1577 |
+
hidden_size (`int`, *optional*):
|
1578 |
+
The hidden size of the attention layer.
|
1579 |
+
cross_attention_dim (`int`, *optional*, defaults to `None`):
|
1580 |
+
The number of channels in the `encoder_hidden_states`.
|
1581 |
+
rank (`int`, defaults to 4):
|
1582 |
+
The dimension of the LoRA update matrices.
|
1583 |
+
|
1584 |
+
"""
|
1585 |
+
|
1586 |
+
def __init__(self, hidden_size, cross_attention_dim=None, rank=4, network_alpha=None):
|
1587 |
+
super().__init__()
|
1588 |
+
|
1589 |
+
self.hidden_size = hidden_size
|
1590 |
+
self.cross_attention_dim = cross_attention_dim
|
1591 |
+
self.rank = rank
|
1592 |
+
|
1593 |
+
self.to_q_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
1594 |
+
self.add_k_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
1595 |
+
self.add_v_proj_lora = LoRALinearLayer(cross_attention_dim or hidden_size, hidden_size, rank, network_alpha)
|
1596 |
+
self.to_k_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
1597 |
+
self.to_v_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
1598 |
+
self.to_out_lora = LoRALinearLayer(hidden_size, hidden_size, rank, network_alpha)
|
1599 |
+
|
1600 |
+
def __call__(self, attn: Attention, hidden_states, *args, **kwargs):
|
1601 |
+
self_cls_name = self.__class__.__name__
|
1602 |
+
deprecate(
|
1603 |
+
self_cls_name,
|
1604 |
+
"0.26.0",
|
1605 |
+
(
|
1606 |
+
f"Make sure use {self_cls_name[4:]} instead by setting"
|
1607 |
+
"LoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using"
|
1608 |
+
" `LoraLoaderMixin.load_lora_weights`"
|
1609 |
+
),
|
1610 |
+
)
|
1611 |
+
attn.to_q.lora_layer = self.to_q_lora.to(hidden_states.device)
|
1612 |
+
attn.to_k.lora_layer = self.to_k_lora.to(hidden_states.device)
|
1613 |
+
attn.to_v.lora_layer = self.to_v_lora.to(hidden_states.device)
|
1614 |
+
attn.to_out[0].lora_layer = self.to_out_lora.to(hidden_states.device)
|
1615 |
+
|
1616 |
+
attn._modules.pop("processor")
|
1617 |
+
attn.processor = AttnAddedKVProcessor()
|
1618 |
+
return attn.processor(attn, hidden_states, *args, **kwargs)
|
1619 |
+
|
1620 |
+
|
1621 |
+
LORA_ATTENTION_PROCESSORS = (
|
1622 |
+
LoRAAttnProcessor,
|
1623 |
+
LoRAAttnProcessor2_0,
|
1624 |
+
LoRAXFormersAttnProcessor,
|
1625 |
+
LoRAAttnAddedKVProcessor,
|
1626 |
+
)
|
1627 |
+
|
1628 |
+
ADDED_KV_ATTENTION_PROCESSORS = (
|
1629 |
+
AttnAddedKVProcessor,
|
1630 |
+
SlicedAttnAddedKVProcessor,
|
1631 |
+
AttnAddedKVProcessor2_0,
|
1632 |
+
XFormersAttnAddedKVProcessor,
|
1633 |
+
LoRAAttnAddedKVProcessor,
|
1634 |
+
)
|
1635 |
+
|
1636 |
+
CROSS_ATTENTION_PROCESSORS = (
|
1637 |
+
AttnProcessor,
|
1638 |
+
AttnProcessor2_0,
|
1639 |
+
XFormersAttnProcessor,
|
1640 |
+
SlicedAttnProcessor,
|
1641 |
+
LoRAAttnProcessor,
|
1642 |
+
LoRAAttnProcessor2_0,
|
1643 |
+
LoRAXFormersAttnProcessor,
|
1644 |
+
)
|
1645 |
+
|
1646 |
+
AttentionProcessor = Union[
|
1647 |
+
AttnProcessor,
|
1648 |
+
AttnProcessor2_0,
|
1649 |
+
XFormersAttnProcessor,
|
1650 |
+
SlicedAttnProcessor,
|
1651 |
+
AttnAddedKVProcessor,
|
1652 |
+
SlicedAttnAddedKVProcessor,
|
1653 |
+
AttnAddedKVProcessor2_0,
|
1654 |
+
XFormersAttnAddedKVProcessor,
|
1655 |
+
CustomDiffusionAttnProcessor,
|
1656 |
+
CustomDiffusionXFormersAttnProcessor,
|
1657 |
+
# depraceted
|
1658 |
+
LoRAAttnProcessor,
|
1659 |
+
LoRAAttnProcessor2_0,
|
1660 |
+
LoRAXFormersAttnProcessor,
|
1661 |
+
LoRAAttnAddedKVProcessor,
|
1662 |
+
]
|
src/models/pipelines.py
ADDED
@@ -0,0 +1,1414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
21 |
+
|
22 |
+
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
23 |
+
from diffusers.models import AutoencoderKL
|
24 |
+
from .unet_3d_condition import UNet3DConditionModel
|
25 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
26 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
27 |
+
from diffusers.utils import (
|
28 |
+
deprecate,
|
29 |
+
logging,
|
30 |
+
replace_example_docstring,
|
31 |
+
)
|
32 |
+
from diffusers.utils.torch_utils import randn_tensor
|
33 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
34 |
+
# from . import TextToVideoSDPipelineOutput
|
35 |
+
|
36 |
+
|
37 |
+
from dataclasses import dataclass
|
38 |
+
from typing import List, Union
|
39 |
+
from typing import Optional, Callable, Dict, Any
|
40 |
+
|
41 |
+
import numpy as np
|
42 |
+
import torch
|
43 |
+
from diffusers.utils import (
|
44 |
+
BaseOutput,
|
45 |
+
)
|
46 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
47 |
+
|
48 |
+
|
49 |
+
@dataclass
|
50 |
+
class TextToVideoSDPipelineOutput(BaseOutput):
|
51 |
+
"""
|
52 |
+
Output class for text-to-video pipelines.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
frames (`List[np.ndarray]` or `torch.FloatTensor`)
|
56 |
+
List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as
|
57 |
+
a `torch` tensor. The length of the list denotes the video length (the number of frames).
|
58 |
+
"""
|
59 |
+
|
60 |
+
frames: Union[List[np.ndarray], torch.FloatTensor]
|
61 |
+
|
62 |
+
|
63 |
+
def tensor2vid(video: torch.Tensor, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) -> List[np.ndarray]:
|
64 |
+
# This code is copied from https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/pipelines/multi_modal/text_to_video_synthesis_pipeline.py#L78
|
65 |
+
# reshape to ncfhw
|
66 |
+
mean = torch.tensor(mean, device=video.device).reshape(1, -1, 1, 1, 1)
|
67 |
+
std = torch.tensor(std, device=video.device).reshape(1, -1, 1, 1, 1)
|
68 |
+
# unnormalize back to [0,1]
|
69 |
+
video = video.mul_(std).add_(mean)
|
70 |
+
video.clamp_(0, 1)
|
71 |
+
# prepare the final outputs
|
72 |
+
i, c, f, h, w = video.shape
|
73 |
+
images = video.permute(2, 3, 0, 4, 1).reshape(
|
74 |
+
f, h, i * w, c
|
75 |
+
) # 1st (frames, h, batch_size, w, c) 2nd (frames, h, batch_size * w, c)
|
76 |
+
images = images.unbind(dim=0) # prepare a list of indvidual (consecutive frames)
|
77 |
+
images = [(image.cpu().numpy() * 255).astype("uint8") for image in images] # f h w c
|
78 |
+
return images
|
79 |
+
|
80 |
+
class TextToVideoSDPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
81 |
+
r"""
|
82 |
+
Pipeline for text-to-video generation.
|
83 |
+
|
84 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
85 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
86 |
+
|
87 |
+
Args:
|
88 |
+
vae ([`AutoencoderKL`]):
|
89 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
90 |
+
text_encoder ([`CLIPTextModel`]):
|
91 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
92 |
+
tokenizer (`CLIPTokenizer`):
|
93 |
+
A [`~transformers.CLIPTokenizer`] to tokenize text.
|
94 |
+
unet ([`UNet3DConditionModel`]):
|
95 |
+
A [`UNet3DConditionModel`] to denoise the encoded video latents.
|
96 |
+
scheduler ([`SchedulerMixin`]):
|
97 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
98 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
99 |
+
"""
|
100 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
vae: AutoencoderKL,
|
105 |
+
text_encoder: CLIPTextModel,
|
106 |
+
tokenizer: CLIPTokenizer,
|
107 |
+
unet: UNet3DConditionModel,
|
108 |
+
scheduler: KarrasDiffusionSchedulers,
|
109 |
+
):
|
110 |
+
super().__init__()
|
111 |
+
|
112 |
+
self.register_modules(
|
113 |
+
vae=vae,
|
114 |
+
text_encoder=text_encoder,
|
115 |
+
tokenizer=tokenizer,
|
116 |
+
unet=unet,
|
117 |
+
scheduler=scheduler,
|
118 |
+
)
|
119 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
120 |
+
|
121 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
122 |
+
def enable_vae_slicing(self):
|
123 |
+
r"""
|
124 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
125 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
126 |
+
"""
|
127 |
+
self.vae.enable_slicing()
|
128 |
+
|
129 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
130 |
+
def disable_vae_slicing(self):
|
131 |
+
r"""
|
132 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
133 |
+
computing decoding in one step.
|
134 |
+
"""
|
135 |
+
self.vae.disable_slicing()
|
136 |
+
|
137 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
|
138 |
+
def enable_vae_tiling(self):
|
139 |
+
r"""
|
140 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
141 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
142 |
+
processing larger images.
|
143 |
+
"""
|
144 |
+
self.vae.enable_tiling()
|
145 |
+
|
146 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
|
147 |
+
def disable_vae_tiling(self):
|
148 |
+
r"""
|
149 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
150 |
+
computing decoding in one step.
|
151 |
+
"""
|
152 |
+
self.vae.disable_tiling()
|
153 |
+
|
154 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
155 |
+
def _encode_prompt(
|
156 |
+
self,
|
157 |
+
prompt,
|
158 |
+
device,
|
159 |
+
num_images_per_prompt,
|
160 |
+
do_classifier_free_guidance,
|
161 |
+
negative_prompt=None,
|
162 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
163 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
164 |
+
lora_scale: Optional[float] = None,
|
165 |
+
):
|
166 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
167 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
168 |
+
|
169 |
+
prompt_embeds_tuple = self.encode_prompt(
|
170 |
+
prompt=prompt,
|
171 |
+
device=device,
|
172 |
+
num_images_per_prompt=num_images_per_prompt,
|
173 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
174 |
+
negative_prompt=negative_prompt,
|
175 |
+
prompt_embeds=prompt_embeds,
|
176 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
177 |
+
lora_scale=lora_scale,
|
178 |
+
)
|
179 |
+
|
180 |
+
# concatenate for backwards comp
|
181 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
182 |
+
|
183 |
+
return prompt_embeds
|
184 |
+
|
185 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
|
186 |
+
def encode_prompt(
|
187 |
+
self,
|
188 |
+
prompt,
|
189 |
+
device,
|
190 |
+
num_images_per_prompt,
|
191 |
+
do_classifier_free_guidance,
|
192 |
+
negative_prompt=None,
|
193 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
194 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
195 |
+
lora_scale: Optional[float] = None,
|
196 |
+
):
|
197 |
+
r"""
|
198 |
+
Encodes the prompt into text encoder hidden states.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
prompt (`str` or `List[str]`, *optional*):
|
202 |
+
prompt to be encoded
|
203 |
+
device: (`torch.device`):
|
204 |
+
torch device
|
205 |
+
num_images_per_prompt (`int`):
|
206 |
+
number of images that should be generated per prompt
|
207 |
+
do_classifier_free_guidance (`bool`):
|
208 |
+
whether to use classifier free guidance or not
|
209 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
210 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
211 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
212 |
+
less than `1`).
|
213 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
214 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
215 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
216 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
217 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
218 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
219 |
+
argument.
|
220 |
+
lora_scale (`float`, *optional*):
|
221 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
222 |
+
"""
|
223 |
+
# set lora scale so that monkey patched LoRA
|
224 |
+
# function of text encoder can correctly access it
|
225 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
226 |
+
self._lora_scale = lora_scale
|
227 |
+
|
228 |
+
# dynamically adjust the LoRA scale
|
229 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
230 |
+
|
231 |
+
if prompt is not None and isinstance(prompt, str):
|
232 |
+
batch_size = 1
|
233 |
+
elif prompt is not None and isinstance(prompt, list):
|
234 |
+
batch_size = len(prompt)
|
235 |
+
else:
|
236 |
+
batch_size = prompt_embeds.shape[0]
|
237 |
+
|
238 |
+
if prompt_embeds is None:
|
239 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
240 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
241 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
242 |
+
|
243 |
+
text_inputs = self.tokenizer(
|
244 |
+
prompt,
|
245 |
+
padding="max_length",
|
246 |
+
max_length=self.tokenizer.model_max_length,
|
247 |
+
truncation=True,
|
248 |
+
return_tensors="pt",
|
249 |
+
)
|
250 |
+
text_input_ids = text_inputs.input_ids
|
251 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
252 |
+
|
253 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
254 |
+
text_input_ids, untruncated_ids
|
255 |
+
):
|
256 |
+
removed_text = self.tokenizer.batch_decode(
|
257 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
258 |
+
)
|
259 |
+
# logger.warning(
|
260 |
+
# "The following part of your input was truncated because CLIP can only handle sequences up to"
|
261 |
+
# f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
262 |
+
# )
|
263 |
+
|
264 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
265 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
266 |
+
else:
|
267 |
+
attention_mask = None
|
268 |
+
|
269 |
+
prompt_embeds = self.text_encoder(
|
270 |
+
text_input_ids.to(device),
|
271 |
+
attention_mask=attention_mask,
|
272 |
+
)
|
273 |
+
prompt_embeds = prompt_embeds[0]
|
274 |
+
|
275 |
+
if self.text_encoder is not None:
|
276 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
277 |
+
elif self.unet is not None:
|
278 |
+
prompt_embeds_dtype = self.unet.dtype
|
279 |
+
else:
|
280 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
281 |
+
|
282 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
283 |
+
|
284 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
285 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
286 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
287 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
288 |
+
|
289 |
+
# get unconditional embeddings for classifier free guidance
|
290 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
291 |
+
uncond_tokens: List[str]
|
292 |
+
if negative_prompt is None:
|
293 |
+
uncond_tokens = [""] * batch_size
|
294 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
295 |
+
raise TypeError(
|
296 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
297 |
+
f" {type(prompt)}."
|
298 |
+
)
|
299 |
+
elif isinstance(negative_prompt, str):
|
300 |
+
uncond_tokens = [negative_prompt]
|
301 |
+
elif batch_size != len(negative_prompt):
|
302 |
+
raise ValueError(
|
303 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
304 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
305 |
+
" the batch size of `prompt`."
|
306 |
+
)
|
307 |
+
else:
|
308 |
+
uncond_tokens = negative_prompt
|
309 |
+
|
310 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
311 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
312 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
313 |
+
|
314 |
+
max_length = prompt_embeds.shape[1]
|
315 |
+
uncond_input = self.tokenizer(
|
316 |
+
uncond_tokens,
|
317 |
+
padding="max_length",
|
318 |
+
max_length=max_length,
|
319 |
+
truncation=True,
|
320 |
+
return_tensors="pt",
|
321 |
+
)
|
322 |
+
|
323 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
324 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
325 |
+
else:
|
326 |
+
attention_mask = None
|
327 |
+
|
328 |
+
negative_prompt_embeds = self.text_encoder(
|
329 |
+
uncond_input.input_ids.to(device),
|
330 |
+
attention_mask=attention_mask,
|
331 |
+
)
|
332 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
333 |
+
|
334 |
+
if do_classifier_free_guidance:
|
335 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
336 |
+
seq_len = negative_prompt_embeds.shape[1]
|
337 |
+
|
338 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
339 |
+
|
340 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
341 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
342 |
+
|
343 |
+
return prompt_embeds, negative_prompt_embeds
|
344 |
+
|
345 |
+
def decode_latents(self, latents):
|
346 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
347 |
+
|
348 |
+
batch_size, channels, num_frames, height, width = latents.shape
|
349 |
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
|
350 |
+
|
351 |
+
image = self.vae.decode(latents).sample
|
352 |
+
video = (
|
353 |
+
image[None, :]
|
354 |
+
.reshape(
|
355 |
+
(
|
356 |
+
batch_size,
|
357 |
+
num_frames,
|
358 |
+
-1,
|
359 |
+
)
|
360 |
+
+ image.shape[2:]
|
361 |
+
)
|
362 |
+
.permute(0, 2, 1, 3, 4)
|
363 |
+
)
|
364 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
365 |
+
video = video.float()
|
366 |
+
return video
|
367 |
+
|
368 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
369 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
370 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
371 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
372 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
373 |
+
# and should be between [0, 1]
|
374 |
+
|
375 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
376 |
+
extra_step_kwargs = {}
|
377 |
+
if accepts_eta:
|
378 |
+
extra_step_kwargs["eta"] = eta
|
379 |
+
|
380 |
+
# check if the scheduler accepts generator
|
381 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
382 |
+
if accepts_generator:
|
383 |
+
extra_step_kwargs["generator"] = generator
|
384 |
+
return extra_step_kwargs
|
385 |
+
|
386 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs
|
387 |
+
def check_inputs(
|
388 |
+
self,
|
389 |
+
prompt,
|
390 |
+
height,
|
391 |
+
width,
|
392 |
+
callback_steps,
|
393 |
+
negative_prompt=None,
|
394 |
+
prompt_embeds=None,
|
395 |
+
negative_prompt_embeds=None,
|
396 |
+
):
|
397 |
+
if height % 8 != 0 or width % 8 != 0:
|
398 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
399 |
+
|
400 |
+
if (callback_steps is None) or (
|
401 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
402 |
+
):
|
403 |
+
raise ValueError(
|
404 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
405 |
+
f" {type(callback_steps)}."
|
406 |
+
)
|
407 |
+
|
408 |
+
if prompt is not None and prompt_embeds is not None:
|
409 |
+
raise ValueError(
|
410 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
411 |
+
" only forward one of the two."
|
412 |
+
)
|
413 |
+
elif prompt is None and prompt_embeds is None:
|
414 |
+
raise ValueError(
|
415 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
416 |
+
)
|
417 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
418 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
419 |
+
|
420 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
421 |
+
raise ValueError(
|
422 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
423 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
424 |
+
)
|
425 |
+
|
426 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
427 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
428 |
+
raise ValueError(
|
429 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
430 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
431 |
+
f" {negative_prompt_embeds.shape}."
|
432 |
+
)
|
433 |
+
|
434 |
+
def prepare_latents(
|
435 |
+
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
|
436 |
+
):
|
437 |
+
shape = (
|
438 |
+
batch_size,
|
439 |
+
num_channels_latents,
|
440 |
+
num_frames,
|
441 |
+
height // self.vae_scale_factor,
|
442 |
+
width // self.vae_scale_factor,
|
443 |
+
)
|
444 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
445 |
+
raise ValueError(
|
446 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
447 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
448 |
+
)
|
449 |
+
|
450 |
+
if latents is None:
|
451 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
452 |
+
else:
|
453 |
+
latents = latents.to(device)
|
454 |
+
|
455 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
456 |
+
latents = latents * self.scheduler.init_noise_sigma
|
457 |
+
return latents
|
458 |
+
|
459 |
+
@torch.no_grad()
|
460 |
+
# @replace_example_docstring(EXAMPLE_DOC_STRING)
|
461 |
+
def __call__(
|
462 |
+
self,
|
463 |
+
prompt: Union[str, List[str]] = None,
|
464 |
+
height: Optional[int] = None,
|
465 |
+
width: Optional[int] = None,
|
466 |
+
num_frames: int = 16,
|
467 |
+
num_inference_steps: int = 50,
|
468 |
+
guidance_scale: float = 9.0,
|
469 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
470 |
+
eta: float = 0.0,
|
471 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
472 |
+
latents: Optional[torch.FloatTensor] = None,
|
473 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
474 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
475 |
+
output_type: Optional[str] = "np",
|
476 |
+
return_dict: bool = True,
|
477 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
478 |
+
callback_steps: int = 1,
|
479 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
480 |
+
):
|
481 |
+
r"""
|
482 |
+
The call function to the pipeline for generation.
|
483 |
+
|
484 |
+
Args:
|
485 |
+
prompt (`str` or `List[str]`, *optional*):
|
486 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
487 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
488 |
+
The height in pixels of the generated video.
|
489 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
490 |
+
The width in pixels of the generated video.
|
491 |
+
num_frames (`int`, *optional*, defaults to 16):
|
492 |
+
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
|
493 |
+
amounts to 2 seconds of video.
|
494 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
495 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
|
496 |
+
expense of slower inference.
|
497 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
498 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
499 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
500 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
501 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
502 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
503 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
504 |
+
The number of images to generate per prompt.
|
505 |
+
eta (`float`, *optional*, defaults to 0.0):
|
506 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
507 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
508 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
509 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
510 |
+
generation deterministic.
|
511 |
+
latents (`torch.FloatTensor`, *optional*):
|
512 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
513 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
514 |
+
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
|
515 |
+
`(batch_size, num_channel, num_frames, height, width)`.
|
516 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
517 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
518 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
519 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
520 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
521 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
522 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
523 |
+
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
|
524 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
525 |
+
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
|
526 |
+
of a plain tuple.
|
527 |
+
callback (`Callable`, *optional*):
|
528 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
529 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
530 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
531 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
532 |
+
every step.
|
533 |
+
cross_attention_kwargs (`dict`, *optional*):
|
534 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
535 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
536 |
+
|
537 |
+
Examples:
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
|
541 |
+
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
|
542 |
+
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
543 |
+
"""
|
544 |
+
# 0. Default height and width to unet
|
545 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
546 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
547 |
+
|
548 |
+
num_images_per_prompt = 1
|
549 |
+
|
550 |
+
# 1. Check inputs. Raise error if not correct
|
551 |
+
self.check_inputs(
|
552 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
553 |
+
)
|
554 |
+
|
555 |
+
# 2. Define call parameters
|
556 |
+
if prompt is not None and isinstance(prompt, str):
|
557 |
+
batch_size = 1
|
558 |
+
elif prompt is not None and isinstance(prompt, list):
|
559 |
+
batch_size = len(prompt)
|
560 |
+
else:
|
561 |
+
batch_size = prompt_embeds.shape[0]
|
562 |
+
|
563 |
+
device = self._execution_device
|
564 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
565 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
566 |
+
# corresponds to doing no classifier free guidance.
|
567 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
568 |
+
|
569 |
+
# 3. Encode input prompt
|
570 |
+
text_encoder_lora_scale = (
|
571 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
572 |
+
)
|
573 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
574 |
+
prompt,
|
575 |
+
device,
|
576 |
+
num_images_per_prompt,
|
577 |
+
do_classifier_free_guidance,
|
578 |
+
negative_prompt,
|
579 |
+
prompt_embeds=prompt_embeds,
|
580 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
581 |
+
lora_scale=text_encoder_lora_scale,
|
582 |
+
)
|
583 |
+
# For classifier free guidance, we need to do two forward passes.
|
584 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
585 |
+
# to avoid doing two forward passes
|
586 |
+
if do_classifier_free_guidance:
|
587 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
588 |
+
|
589 |
+
# 4. Prepare timesteps
|
590 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
591 |
+
timesteps = self.scheduler.timesteps
|
592 |
+
|
593 |
+
# 5. Prepare latent variables
|
594 |
+
num_channels_latents = self.unet.config.in_channels
|
595 |
+
latents = self.prepare_latents(
|
596 |
+
batch_size * num_images_per_prompt,
|
597 |
+
num_channels_latents,
|
598 |
+
num_frames,
|
599 |
+
height,
|
600 |
+
width,
|
601 |
+
prompt_embeds.dtype,
|
602 |
+
device,
|
603 |
+
generator,
|
604 |
+
latents,
|
605 |
+
)
|
606 |
+
|
607 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
608 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
609 |
+
|
610 |
+
# 7. Denoising loop
|
611 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
612 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
613 |
+
for i, t in enumerate(timesteps):
|
614 |
+
# expand the latents if we are doing classifier free guidance
|
615 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
616 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
617 |
+
|
618 |
+
# predict the noise residual
|
619 |
+
noise_pred = self.unet(
|
620 |
+
latent_model_input,
|
621 |
+
t,
|
622 |
+
encoder_hidden_states=prompt_embeds,
|
623 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
624 |
+
return_dict=False,
|
625 |
+
)[0]
|
626 |
+
|
627 |
+
# perform guidance
|
628 |
+
if do_classifier_free_guidance:
|
629 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
630 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
631 |
+
|
632 |
+
# reshape latents
|
633 |
+
bsz, channel, frames, width, height = latents.shape
|
634 |
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
635 |
+
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
636 |
+
|
637 |
+
# compute the previous noisy sample x_t -> x_t-1
|
638 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
639 |
+
|
640 |
+
# reshape latents back
|
641 |
+
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
|
642 |
+
|
643 |
+
# call the callback, if provided
|
644 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
645 |
+
progress_bar.update()
|
646 |
+
if callback is not None and i % callback_steps == 0:
|
647 |
+
callback(i, t, latents)
|
648 |
+
|
649 |
+
if output_type == "latent":
|
650 |
+
return TextToVideoSDPipelineOutput(frames=latents)
|
651 |
+
|
652 |
+
video_tensor = self.decode_latents(latents)
|
653 |
+
|
654 |
+
if output_type == "pt":
|
655 |
+
video = video_tensor
|
656 |
+
else:
|
657 |
+
video = tensor2vid(video_tensor)
|
658 |
+
|
659 |
+
# Offload all models
|
660 |
+
self.maybe_free_model_hooks()
|
661 |
+
|
662 |
+
if not return_dict:
|
663 |
+
return (video,)
|
664 |
+
|
665 |
+
return TextToVideoSDPipelineOutput(frames=video)
|
666 |
+
|
667 |
+
|
668 |
+
|
669 |
+
class TextToVideoSDPipelineSpatialAware(TextToVideoSDPipeline):
|
670 |
+
def __init__(
|
671 |
+
self,
|
672 |
+
vae,
|
673 |
+
text_encoder,
|
674 |
+
tokenizer,
|
675 |
+
unet,
|
676 |
+
scheduler,
|
677 |
+
):
|
678 |
+
# print(f"Initializing this pipeline with {type(vae)}, {type(unet)}")
|
679 |
+
unet_new = UNet3DConditionModel()
|
680 |
+
unet_new.load_state_dict(unet.state_dict())
|
681 |
+
super().__init__(vae, text_encoder, tokenizer, unet_new, scheduler)
|
682 |
+
|
683 |
+
def _encode_prompt(
|
684 |
+
self,
|
685 |
+
prompt,
|
686 |
+
device,
|
687 |
+
num_images_per_prompt,
|
688 |
+
do_classifier_free_guidance,
|
689 |
+
negative_prompt=None,
|
690 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
691 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
692 |
+
lora_scale: Optional[float] = None,
|
693 |
+
fg_prompt: Optional[str] = None,
|
694 |
+
num_frames: int = 16,
|
695 |
+
):
|
696 |
+
r"""
|
697 |
+
Encodes the prompt into text encoder hidden states.
|
698 |
+
|
699 |
+
Args:
|
700 |
+
prompt (`str` or `List[str]`, *optional*):
|
701 |
+
prompt to be encoded
|
702 |
+
device: (`torch.device`):
|
703 |
+
torch device
|
704 |
+
num_images_per_prompt (`int`):
|
705 |
+
number of images that should be generated per prompt
|
706 |
+
do_classifier_free_guidance (`bool`):
|
707 |
+
whether to use classifier free guidance or not
|
708 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
709 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
710 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
711 |
+
less than `1`).
|
712 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
713 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
714 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
715 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
716 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
717 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
718 |
+
argument.
|
719 |
+
lora_scale (`float`, *optional*):
|
720 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
721 |
+
"""
|
722 |
+
# set lora scale so that monkey patched LoRA
|
723 |
+
# function of text encoder can correctly access it
|
724 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
725 |
+
self._lora_scale = lora_scale
|
726 |
+
|
727 |
+
if prompt is not None and isinstance(prompt, str):
|
728 |
+
batch_size = 1
|
729 |
+
elif prompt is not None and isinstance(prompt, list):
|
730 |
+
batch_size = len(prompt)
|
731 |
+
else:
|
732 |
+
batch_size = prompt_embeds.shape[0]
|
733 |
+
|
734 |
+
if prompt_embeds is None:
|
735 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
736 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
737 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
738 |
+
|
739 |
+
text_inputs = self.tokenizer(
|
740 |
+
prompt,
|
741 |
+
padding="max_length",
|
742 |
+
max_length=self.tokenizer.model_max_length,
|
743 |
+
truncation=True,
|
744 |
+
return_tensors="pt",
|
745 |
+
)
|
746 |
+
text_input_ids = text_inputs.input_ids
|
747 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
748 |
+
|
749 |
+
|
750 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
751 |
+
text_input_ids, untruncated_ids
|
752 |
+
):
|
753 |
+
removed_text = self.tokenizer.batch_decode(
|
754 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
755 |
+
)
|
756 |
+
# logger.warning(
|
757 |
+
# "The following part of your input was truncated because CLIP can only handle sequences up to"
|
758 |
+
# f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
759 |
+
# )
|
760 |
+
|
761 |
+
|
762 |
+
|
763 |
+
if fg_prompt is not None:
|
764 |
+
if not isinstance(fg_prompt, list):
|
765 |
+
fg_text_inputs = self.tokenizer(
|
766 |
+
fg_prompt,
|
767 |
+
# padding="max_length",
|
768 |
+
# max_length=self.tokenizer.model_max_length,
|
769 |
+
# truncation=True,
|
770 |
+
return_tensors="pt",
|
771 |
+
)
|
772 |
+
# breakpoint()
|
773 |
+
fg_text_input_ids = fg_text_inputs.input_ids
|
774 |
+
|
775 |
+
# remove first and last token
|
776 |
+
fg_text_input_ids = fg_text_input_ids[:,:-1]
|
777 |
+
|
778 |
+
# remove common tokens in fg_text_input_ids from text_input_ids
|
779 |
+
batch_size = text_input_ids.shape[0]
|
780 |
+
# Create a mask that is True wherever a token in text_input_ids matches a token in fg_text_input_ids
|
781 |
+
mask = (text_input_ids.unsqueeze(-1) == fg_text_input_ids.unsqueeze(1)).any(dim=-1)
|
782 |
+
# print(mask)
|
783 |
+
# breakpoint()
|
784 |
+
# Get the values from text_input_ids that are not in fg_text_input_ids
|
785 |
+
encoder_attention_mask = ~mask
|
786 |
+
encoder_attention_mask = encoder_attention_mask.repeat((2,1))
|
787 |
+
encoder_attention_mask = encoder_attention_mask.repeat((num_frames,1)) # To account for videos
|
788 |
+
encoder_attention_mask = encoder_attention_mask.to(device)
|
789 |
+
|
790 |
+
# text_input_ids_filtered = text_input_ids[~mask].view(1, -1)
|
791 |
+
# text_input_ids_filtered will now contain the values from text_input_ids that aren't in fg_text_input_ids
|
792 |
+
else:
|
793 |
+
encoder_attention_mask = []
|
794 |
+
for fg_prompt_i in fg_prompt:
|
795 |
+
fg_text_inputs = self.tokenizer(
|
796 |
+
fg_prompt_i,
|
797 |
+
return_tensors="pt",)
|
798 |
+
fg_text_input_ids = fg_text_inputs.input_ids
|
799 |
+
|
800 |
+
# remove first and last token
|
801 |
+
fg_text_input_ids = fg_text_input_ids[:,:-1]
|
802 |
+
|
803 |
+
# remove common tokens in fg_text_input_ids from text_input_ids
|
804 |
+
batch_size = text_input_ids.shape[0]
|
805 |
+
# Create a mask that is True wherever a token in text_input_ids matches a token in fg_text_input_ids
|
806 |
+
mask = (text_input_ids.unsqueeze(-1) == fg_text_input_ids.unsqueeze(1)).any(dim=-1)
|
807 |
+
encoder_attention_mask_i = ~mask
|
808 |
+
encoder_attention_mask_i = encoder_attention_mask_i.repeat((2,1))
|
809 |
+
encoder_attention_mask_i = encoder_attention_mask_i.repeat((num_frames,1)) # To account for videos
|
810 |
+
encoder_attention_mask_i = encoder_attention_mask_i.to(device)
|
811 |
+
encoder_attention_mask.append(encoder_attention_mask_i)
|
812 |
+
|
813 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
814 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
815 |
+
else:
|
816 |
+
attention_mask = None
|
817 |
+
|
818 |
+
prompt_embeds = self.text_encoder(
|
819 |
+
text_input_ids.to(device),
|
820 |
+
attention_mask=attention_mask,
|
821 |
+
# attention_mask=encoder_attention_mask[:batch_size] if fg_prompt is not None else None,
|
822 |
+
)
|
823 |
+
prompt_embeds = prompt_embeds[0]
|
824 |
+
|
825 |
+
if self.text_encoder is not None:
|
826 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
827 |
+
elif self.unet is not None:
|
828 |
+
prompt_embeds_dtype = self.unet.dtype
|
829 |
+
else:
|
830 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
831 |
+
|
832 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
833 |
+
|
834 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
835 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
836 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
837 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
838 |
+
|
839 |
+
# get unconditional embeddings for classifier free guidance
|
840 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
841 |
+
uncond_tokens: List[str]
|
842 |
+
if negative_prompt is None:
|
843 |
+
uncond_tokens = [""] * batch_size
|
844 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
845 |
+
raise TypeError(
|
846 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
847 |
+
f" {type(prompt)}."
|
848 |
+
)
|
849 |
+
elif isinstance(negative_prompt, str):
|
850 |
+
uncond_tokens = [negative_prompt]
|
851 |
+
elif batch_size != len(negative_prompt):
|
852 |
+
raise ValueError(
|
853 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
854 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
855 |
+
" the batch size of `prompt`."
|
856 |
+
)
|
857 |
+
else:
|
858 |
+
uncond_tokens = negative_prompt
|
859 |
+
|
860 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
861 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
862 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
863 |
+
|
864 |
+
max_length = prompt_embeds.shape[1]
|
865 |
+
uncond_input = self.tokenizer(
|
866 |
+
uncond_tokens,
|
867 |
+
padding="max_length",
|
868 |
+
max_length=max_length,
|
869 |
+
truncation=True,
|
870 |
+
return_tensors="pt",
|
871 |
+
)
|
872 |
+
|
873 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
874 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
875 |
+
else:
|
876 |
+
attention_mask = None
|
877 |
+
|
878 |
+
negative_prompt_embeds = self.text_encoder(
|
879 |
+
uncond_input.input_ids.to(device),
|
880 |
+
attention_mask=attention_mask,
|
881 |
+
)
|
882 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
883 |
+
|
884 |
+
if do_classifier_free_guidance:
|
885 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
886 |
+
seq_len = negative_prompt_embeds.shape[1]
|
887 |
+
|
888 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
889 |
+
|
890 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
891 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
892 |
+
|
893 |
+
# For classifier free guidance, we need to do two forward passes.
|
894 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
895 |
+
# to avoid doing two forward passes
|
896 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
897 |
+
|
898 |
+
if fg_prompt is not None:
|
899 |
+
return prompt_embeds, encoder_attention_mask
|
900 |
+
return prompt_embeds, None
|
901 |
+
|
902 |
+
|
903 |
+
@torch.no_grad()
|
904 |
+
def __call__(
|
905 |
+
self,
|
906 |
+
prompt: Union[str, List[str]] = None,
|
907 |
+
height: Optional[int] = None,
|
908 |
+
width: Optional[int] = None,
|
909 |
+
num_frames: int = 16,
|
910 |
+
num_inference_steps: int = 50,
|
911 |
+
guidance_scale: float = 9.0,
|
912 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
913 |
+
eta: float = 0.0,
|
914 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
915 |
+
latents: Optional[torch.FloatTensor] = None,
|
916 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
917 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
918 |
+
output_type: Optional[str] = "np",
|
919 |
+
return_dict: bool = True,
|
920 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
921 |
+
callback_steps: int = 1,
|
922 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
923 |
+
frozen_mask: Optional[torch.FloatTensor] = None,
|
924 |
+
frozen_steps: Optional[int] = None,
|
925 |
+
frozen_text_mask: Optional[torch.FloatTensor] = None,
|
926 |
+
frozen_prompt: Optional[Union[str, List[str]]] = None,
|
927 |
+
custom_attention_mask: Optional[torch.FloatTensor] = None,
|
928 |
+
latents_all_input: Optional[torch.FloatTensor] = None,
|
929 |
+
fg_prompt: Optional[torch.FloatTensor]=None,
|
930 |
+
make_attention_mask_2d=False,
|
931 |
+
attention_mask_block_diagonal=False,):
|
932 |
+
r"""
|
933 |
+
The call function to the pipeline for generation.
|
934 |
+
|
935 |
+
Args:
|
936 |
+
prompt (`str` or `List[str]`, *optional*):
|
937 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
938 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
939 |
+
The height in pixels of the generated video.
|
940 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
941 |
+
The width in pixels of the generated video.
|
942 |
+
num_frames (`int`, *optional*, defaults to 16):
|
943 |
+
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
|
944 |
+
amounts to 2 seconds of video.
|
945 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
946 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
|
947 |
+
expense of slower inference.
|
948 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
949 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
950 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
951 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
952 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
953 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
954 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
955 |
+
The number of images to generate per prompt.
|
956 |
+
eta (`float`, *optional*, defaults to 0.0):
|
957 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
958 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
959 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
960 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
961 |
+
generation deterministic.
|
962 |
+
latents (`torch.FloatTensor`, *optional*):
|
963 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
964 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
965 |
+
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
|
966 |
+
`(batch_size, num_channel, num_frames, height, width)`.
|
967 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
968 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
969 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
970 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
971 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
972 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
973 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
974 |
+
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
|
975 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
976 |
+
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
|
977 |
+
of a plain tuple.
|
978 |
+
callback (`Callable`, *optional*):
|
979 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
980 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
981 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
982 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
983 |
+
every step.
|
984 |
+
cross_attention_kwargs (`dict`, *optional*):
|
985 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
986 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
987 |
+
|
988 |
+
Examples:
|
989 |
+
|
990 |
+
Returns:
|
991 |
+
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
|
992 |
+
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
|
993 |
+
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
994 |
+
"""
|
995 |
+
# 0. Default height and width to unet
|
996 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
997 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
998 |
+
|
999 |
+
num_images_per_prompt = 1
|
1000 |
+
|
1001 |
+
# 1. Check inputs. Raise error if not correct
|
1002 |
+
self.check_inputs(
|
1003 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
# 2. Define call parameters
|
1007 |
+
if prompt is not None and isinstance(prompt, str):
|
1008 |
+
batch_size = 1
|
1009 |
+
elif prompt is not None and isinstance(prompt, list):
|
1010 |
+
batch_size = len(prompt)
|
1011 |
+
else:
|
1012 |
+
batch_size = prompt_embeds.shape[0]
|
1013 |
+
|
1014 |
+
device = self._execution_device
|
1015 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1016 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1017 |
+
# corresponds to doing no classifier free guidance.
|
1018 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1019 |
+
|
1020 |
+
# 3. Encode input prompt
|
1021 |
+
text_encoder_lora_scale = (
|
1022 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1023 |
+
)
|
1024 |
+
prompt_embeds, custom_attention_mask = self._encode_prompt(
|
1025 |
+
prompt,
|
1026 |
+
device,
|
1027 |
+
num_images_per_prompt,
|
1028 |
+
do_classifier_free_guidance,
|
1029 |
+
negative_prompt,
|
1030 |
+
prompt_embeds=prompt_embeds,
|
1031 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1032 |
+
lora_scale=text_encoder_lora_scale,
|
1033 |
+
fg_prompt=fg_prompt,
|
1034 |
+
num_frames=num_frames,
|
1035 |
+
)
|
1036 |
+
if frozen_prompt is not None: # freeze the prompt
|
1037 |
+
prompt_embeds, _ = self._encode_prompt(
|
1038 |
+
frozen_prompt,
|
1039 |
+
device,
|
1040 |
+
num_images_per_prompt,
|
1041 |
+
do_classifier_free_guidance,
|
1042 |
+
negative_prompt,
|
1043 |
+
prompt_embeds=None,
|
1044 |
+
negative_prompt_embeds=None,
|
1045 |
+
lora_scale=text_encoder_lora_scale,
|
1046 |
+
)
|
1047 |
+
# if frozen_prompt is not None: # TODO see why different length of prompt and frozen_prompt causes error
|
1048 |
+
# frozen_prompt_embeds = self._encode_prompt(
|
1049 |
+
# frozen_prompt,
|
1050 |
+
# device,
|
1051 |
+
# num_images_per_prompt,
|
1052 |
+
# do_classifier_free_guidance,
|
1053 |
+
# negative_prompt,
|
1054 |
+
# prompt_embeds=None,
|
1055 |
+
# negative_prompt_embeds=None,
|
1056 |
+
# lora_scale=text_encoder_lora_scale,)
|
1057 |
+
# # breakpoint()
|
1058 |
+
# else:
|
1059 |
+
# frozen_prompt_embeds = None
|
1060 |
+
|
1061 |
+
# 4. Prepare timesteps
|
1062 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1063 |
+
timesteps = self.scheduler.timesteps
|
1064 |
+
|
1065 |
+
# 5. Prepare latent variables
|
1066 |
+
num_channels_latents = self.unet.config.in_channels
|
1067 |
+
latents = self.prepare_latents(
|
1068 |
+
batch_size * num_images_per_prompt,
|
1069 |
+
num_channels_latents,
|
1070 |
+
num_frames,
|
1071 |
+
height,
|
1072 |
+
width,
|
1073 |
+
prompt_embeds.dtype,
|
1074 |
+
device,
|
1075 |
+
generator,
|
1076 |
+
latents,
|
1077 |
+
)
|
1078 |
+
|
1079 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1080 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1081 |
+
if frozen_mask is not None:
|
1082 |
+
if not isinstance(frozen_mask, list):
|
1083 |
+
attention_mask = frozen_mask.clone()
|
1084 |
+
attention_mask = attention_mask.view(attention_mask.shape[0], -1).repeat((2,1)).to(frozen_mask.device) # For video
|
1085 |
+
|
1086 |
+
attention_mask = attention_mask.bool()
|
1087 |
+
|
1088 |
+
else:
|
1089 |
+
attention_mask = []
|
1090 |
+
for frozen_mask_i in frozen_mask:
|
1091 |
+
attention_mask_i = frozen_mask_i.clone()
|
1092 |
+
attention_mask_i = attention_mask_i.view(attention_mask_i.shape[0], -1).repeat((2,1)).to(frozen_mask_i.device)
|
1093 |
+
attention_mask_i = attention_mask_i.bool()
|
1094 |
+
attention_mask.append(attention_mask_i)
|
1095 |
+
|
1096 |
+
# if make_attention_mask_2d:
|
1097 |
+
# # This converts attention mask into (num_frames*2, num_pixels, num_pixels)
|
1098 |
+
# attention_mask = attention_mask.unsqueeze(1)
|
1099 |
+
# tmp_mask = attention_mask.permute(0,2,1) # 32, 1024, 1
|
1100 |
+
# # The following line makes attention mask to have a block of ones
|
1101 |
+
# attention_mask_2d = torch.bitwise_and(attention_mask, tmp_mask)
|
1102 |
+
# if attention_mask_block_diagonal:
|
1103 |
+
# tmp_mask = ~attention_mask
|
1104 |
+
# # We now get ones where background attends to background
|
1105 |
+
# tmp_mask_2 = tmp_mask.permute(0, 2, 1)
|
1106 |
+
# tmp_mask = torch.bitwise_and(tmp_mask, tmp_mask_2)
|
1107 |
+
# # We now get a block diagonal structure
|
1108 |
+
# attention_mask_2d = torch.bitwise_or(attention_mask_2d, tmp_mask)
|
1109 |
+
# attention_mask = attention_mask_2d
|
1110 |
+
# attention_mask = ~attention_mask
|
1111 |
+
# 7. Denoising loop
|
1112 |
+
latents_all = []
|
1113 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1114 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1115 |
+
for i, t in enumerate(timesteps):
|
1116 |
+
# expand the latents if we are doing classifier free guidance
|
1117 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1118 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1119 |
+
|
1120 |
+
# predict the noise residual
|
1121 |
+
noise_pred = self.unet(
|
1122 |
+
latent_model_input,
|
1123 |
+
t,
|
1124 |
+
encoder_hidden_states=prompt_embeds,
|
1125 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1126 |
+
return_dict=False,
|
1127 |
+
encoder_attention_mask=custom_attention_mask if custom_attention_mask is not None and i < frozen_steps else None,
|
1128 |
+
attention_mask=attention_mask if frozen_steps is not None and i < frozen_steps else None,
|
1129 |
+
make_2d_attention_mask=make_attention_mask_2d,
|
1130 |
+
block_diagonal_attention=attention_mask_block_diagonal,
|
1131 |
+
)[0]
|
1132 |
+
|
1133 |
+
# perform guidance
|
1134 |
+
if do_classifier_free_guidance:
|
1135 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1136 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1137 |
+
|
1138 |
+
# reshape latents
|
1139 |
+
bsz, channel, frames, width, height = latents.shape
|
1140 |
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
1141 |
+
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
1142 |
+
|
1143 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1144 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1145 |
+
|
1146 |
+
# reshape latents back
|
1147 |
+
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
|
1148 |
+
latents_all.append(latents)
|
1149 |
+
|
1150 |
+
# update the prompt_embeds after the frozen_steps to consider the whole prompt, including fg_prompt
|
1151 |
+
if frozen_steps is not None and i == frozen_steps:
|
1152 |
+
prompt_embeds, _ = self._encode_prompt(
|
1153 |
+
prompt,
|
1154 |
+
device,
|
1155 |
+
num_images_per_prompt,
|
1156 |
+
do_classifier_free_guidance,
|
1157 |
+
negative_prompt,
|
1158 |
+
prompt_embeds=None,
|
1159 |
+
negative_prompt_embeds=None,
|
1160 |
+
lora_scale=text_encoder_lora_scale,
|
1161 |
+
fg_prompt=None,
|
1162 |
+
)
|
1163 |
+
# call the callback, if provided
|
1164 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1165 |
+
progress_bar.update()
|
1166 |
+
if callback is not None and i % callback_steps == 0:
|
1167 |
+
callback(i, t, latents)
|
1168 |
+
|
1169 |
+
if output_type == "latent":
|
1170 |
+
# return TextToVideoSDPipelineOutput(frames=latents)
|
1171 |
+
latents_all = torch.cat(latents_all, dim=0) # (num_inference_steps, num_channels_latents, num_frames, height, width) batch size is 1
|
1172 |
+
print(latents_all.shape)
|
1173 |
+
return TextToVideoSDPipelineOutput(frames=latents_all)
|
1174 |
+
|
1175 |
+
video_tensor = self.decode_latents(latents)
|
1176 |
+
|
1177 |
+
if output_type == "pt":
|
1178 |
+
video = video_tensor
|
1179 |
+
else:
|
1180 |
+
video = tensor2vid(video_tensor)
|
1181 |
+
|
1182 |
+
# Offload last model to CPU
|
1183 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1184 |
+
self.final_offload_hook.offload()
|
1185 |
+
|
1186 |
+
if not return_dict:
|
1187 |
+
return (video,)
|
1188 |
+
|
1189 |
+
return TextToVideoSDPipelineOutput(frames=video)
|
1190 |
+
|
1191 |
+
@torch.no_grad()
|
1192 |
+
def __call__latestNotCalledForNow(
|
1193 |
+
self,
|
1194 |
+
prompt: Union[str, List[str]] = None,
|
1195 |
+
height: Optional[int] = None,
|
1196 |
+
width: Optional[int] = None,
|
1197 |
+
num_frames: int = 16,
|
1198 |
+
num_inference_steps: int = 50,
|
1199 |
+
guidance_scale: float = 9.0,
|
1200 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
1201 |
+
eta: float = 0.0,
|
1202 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
1203 |
+
latents: Optional[torch.FloatTensor] = None,
|
1204 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
1205 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
1206 |
+
output_type: Optional[str] = "np",
|
1207 |
+
return_dict: bool = True,
|
1208 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
1209 |
+
callback_steps: int = 1,
|
1210 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1211 |
+
clip_skip: Optional[int] = None,
|
1212 |
+
frozen_mask: Optional[torch.FloatTensor] = None,
|
1213 |
+
frozen_steps: Optional[int] = None,
|
1214 |
+
latents_all_input: Optional[torch.FloatTensor] = None,
|
1215 |
+
):
|
1216 |
+
r"""
|
1217 |
+
The call function to the pipeline for generation.
|
1218 |
+
|
1219 |
+
Args:
|
1220 |
+
prompt (`str` or `List[str]`, *optional*):
|
1221 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
1222 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1223 |
+
The height in pixels of the generated video.
|
1224 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
1225 |
+
The width in pixels of the generated video.
|
1226 |
+
num_frames (`int`, *optional*, defaults to 16):
|
1227 |
+
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
|
1228 |
+
amounts to 2 seconds of video.
|
1229 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
1230 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
|
1231 |
+
expense of slower inference.
|
1232 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
1233 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
1234 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
1235 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
1236 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
1237 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
1238 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
1239 |
+
The number of images to generate per prompt.
|
1240 |
+
eta (`float`, *optional*, defaults to 0.0):
|
1241 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
1242 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
1243 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
1244 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
1245 |
+
generation deterministic.
|
1246 |
+
latents (`torch.FloatTensor`, *optional*):
|
1247 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
1248 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
1249 |
+
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
|
1250 |
+
`(batch_size, num_channel, num_frames, height, width)`.
|
1251 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
1252 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
1253 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
1254 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
1255 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
1256 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
1257 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
1258 |
+
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
|
1259 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1260 |
+
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
|
1261 |
+
of a plain tuple.
|
1262 |
+
callback (`Callable`, *optional*):
|
1263 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
1264 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
1265 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
1266 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
1267 |
+
every step.
|
1268 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1269 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
1270 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1271 |
+
clip_skip (`int`, *optional*):
|
1272 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
1273 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
1274 |
+
Examples:
|
1275 |
+
|
1276 |
+
Returns:
|
1277 |
+
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
|
1278 |
+
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
|
1279 |
+
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
|
1280 |
+
"""
|
1281 |
+
# 0. Default height and width to unet
|
1282 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
1283 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
1284 |
+
|
1285 |
+
num_images_per_prompt = 1
|
1286 |
+
|
1287 |
+
# 1. Check inputs. Raise error if not correct
|
1288 |
+
self.check_inputs(
|
1289 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
1290 |
+
)
|
1291 |
+
|
1292 |
+
# 2. Define call parameters
|
1293 |
+
if prompt is not None and isinstance(prompt, str):
|
1294 |
+
batch_size = 1
|
1295 |
+
elif prompt is not None and isinstance(prompt, list):
|
1296 |
+
batch_size = len(prompt)
|
1297 |
+
else:
|
1298 |
+
batch_size = prompt_embeds.shape[0]
|
1299 |
+
|
1300 |
+
device = self._execution_device
|
1301 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
1302 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
1303 |
+
# corresponds to doing no classifier free guidance.
|
1304 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
1305 |
+
|
1306 |
+
# 3. Encode input prompt
|
1307 |
+
text_encoder_lora_scale = (
|
1308 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
1309 |
+
)
|
1310 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
1311 |
+
prompt,
|
1312 |
+
device,
|
1313 |
+
num_images_per_prompt,
|
1314 |
+
do_classifier_free_guidance,
|
1315 |
+
negative_prompt,
|
1316 |
+
prompt_embeds=prompt_embeds,
|
1317 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1318 |
+
lora_scale=text_encoder_lora_scale,
|
1319 |
+
clip_skip=clip_skip,
|
1320 |
+
)
|
1321 |
+
# For classifier free guidance, we need to do two forward passes.
|
1322 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
1323 |
+
# to avoid doing two forward passes
|
1324 |
+
if do_classifier_free_guidance:
|
1325 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
1326 |
+
|
1327 |
+
# 4. Prepare timesteps
|
1328 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
1329 |
+
timesteps = self.scheduler.timesteps
|
1330 |
+
|
1331 |
+
# 5. Prepare latent variables
|
1332 |
+
num_channels_latents = self.unet.config.in_channels
|
1333 |
+
latents = self.prepare_latents(
|
1334 |
+
batch_size * num_images_per_prompt,
|
1335 |
+
num_channels_latents,
|
1336 |
+
num_frames,
|
1337 |
+
height,
|
1338 |
+
width,
|
1339 |
+
prompt_embeds.dtype,
|
1340 |
+
device,
|
1341 |
+
generator,
|
1342 |
+
latents,
|
1343 |
+
)
|
1344 |
+
|
1345 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1346 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1347 |
+
|
1348 |
+
# 7. Denoising loop
|
1349 |
+
latents_all = []
|
1350 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
1351 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1352 |
+
for i, t in enumerate(timesteps):
|
1353 |
+
# expand the latents if we are doing classifier free guidance
|
1354 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
1355 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1356 |
+
|
1357 |
+
# predict the noise residual
|
1358 |
+
noise_pred = self.unet(
|
1359 |
+
latent_model_input,
|
1360 |
+
t,
|
1361 |
+
encoder_hidden_states=prompt_embeds,
|
1362 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1363 |
+
return_dict=False,
|
1364 |
+
)[0]
|
1365 |
+
|
1366 |
+
# perform guidance
|
1367 |
+
if do_classifier_free_guidance:
|
1368 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1369 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1370 |
+
|
1371 |
+
# reshape latents
|
1372 |
+
bsz, channel, frames, width, height = latents.shape
|
1373 |
+
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
1374 |
+
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
|
1375 |
+
|
1376 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1377 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1378 |
+
|
1379 |
+
|
1380 |
+
# reshape latents back
|
1381 |
+
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
|
1382 |
+
latents_all.append(latents)
|
1383 |
+
|
1384 |
+
# put frozen latents back
|
1385 |
+
if frozen_mask is not None and i < frozen_steps:
|
1386 |
+
latents = latents_all_input[i+1:i+2,...] * frozen_mask + latents * (1. - frozen_mask)
|
1387 |
+
print(t, latents.shape, frozen_mask.shape)
|
1388 |
+
|
1389 |
+
# call the callback, if provided
|
1390 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1391 |
+
progress_bar.update()
|
1392 |
+
if callback is not None and i % callback_steps == 0:
|
1393 |
+
callback(i, t, latents)
|
1394 |
+
|
1395 |
+
if output_type == "latent":
|
1396 |
+
# return TextToVideoSDPipelineOutput(frames=latents)
|
1397 |
+
latents_all = torch.cat(latents_all, dim=0) # (num_inference_steps, num_channels_latents, num_frames, height, width) batch size is 1
|
1398 |
+
print(latents_all.shape)
|
1399 |
+
return TextToVideoSDPipelineOutput(frames=latents_all)
|
1400 |
+
|
1401 |
+
video_tensor = self.decode_latents(latents)
|
1402 |
+
|
1403 |
+
if output_type == "pt":
|
1404 |
+
video = video_tensor
|
1405 |
+
else:
|
1406 |
+
video = tensor2vid(video_tensor)
|
1407 |
+
|
1408 |
+
# Offload all models
|
1409 |
+
self.maybe_free_model_hooks()
|
1410 |
+
|
1411 |
+
if not return_dict:
|
1412 |
+
return (video,)
|
1413 |
+
|
1414 |
+
return TextToVideoSDPipelineOutput(frames=video)
|
src/models/sd_pipeline.py
ADDED
@@ -0,0 +1,719 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
3 |
+
import PIL
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
from packaging import version
|
7 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
8 |
+
|
9 |
+
from diffusers.configuration_utils import FrozenDict
|
10 |
+
from diffusers.image_processor import VaeImageProcessor
|
11 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
12 |
+
from diffusers.models import AutoencoderKL
|
13 |
+
from .unet_2d_condition import UNet2DConditionModel
|
14 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
15 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
16 |
+
from diffusers.utils import (
|
17 |
+
deprecate,
|
18 |
+
logging,
|
19 |
+
replace_example_docstring,
|
20 |
+
)
|
21 |
+
from diffusers.utils import (
|
22 |
+
BaseOutput,
|
23 |
+
)
|
24 |
+
from diffusers.utils.torch_utils import randn_tensor
|
25 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
26 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
27 |
+
|
28 |
+
from dataclasses import dataclass
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class StableDiffusionPipelineOutput(BaseOutput):
|
33 |
+
"""
|
34 |
+
Output class for Stable Diffusion pipelines.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
38 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
39 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
40 |
+
nsfw_content_detected (`List[bool]`)
|
41 |
+
List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
42 |
+
(nsfw) content, or `None` if safety checking could not be performed.
|
43 |
+
"""
|
44 |
+
|
45 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
46 |
+
nsfw_content_detected: Optional[List[bool]]
|
47 |
+
|
48 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
49 |
+
"""
|
50 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
51 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
52 |
+
"""
|
53 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
54 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
55 |
+
# rescale the results from guidance (fixes overexposure)
|
56 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
57 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
58 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
59 |
+
return noise_cfg
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
class StableDiffusionPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin):
|
64 |
+
r"""
|
65 |
+
Pipeline for text-to-image generation using Stable Diffusion.
|
66 |
+
|
67 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
68 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
69 |
+
|
70 |
+
The pipeline also inherits the following loading methods:
|
71 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
72 |
+
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
73 |
+
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
74 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
75 |
+
|
76 |
+
Args:
|
77 |
+
vae ([`AutoencoderKL`]):
|
78 |
+
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
|
79 |
+
text_encoder ([`~transformers.CLIPTextModel`]):
|
80 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
81 |
+
tokenizer ([`~transformers.CLIPTokenizer`]):
|
82 |
+
A `CLIPTokenizer` to tokenize text.
|
83 |
+
unet ([`UNet2DConditionModel`]):
|
84 |
+
A `UNet2DConditionModel` to denoise the encoded image latents.
|
85 |
+
scheduler ([`SchedulerMixin`]):
|
86 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
87 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
88 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
89 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
90 |
+
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
|
91 |
+
about a model's potential harms.
|
92 |
+
feature_extractor ([`~transformers.CLIPImageProcessor`]):
|
93 |
+
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
94 |
+
"""
|
95 |
+
model_cpu_offload_seq = "text_encoder->unet->vae"
|
96 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
97 |
+
_exclude_from_cpu_offload = ["safety_checker"]
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vae: AutoencoderKL,
|
102 |
+
text_encoder: CLIPTextModel,
|
103 |
+
tokenizer: CLIPTokenizer,
|
104 |
+
unet: UNet2DConditionModel,
|
105 |
+
scheduler: KarrasDiffusionSchedulers,
|
106 |
+
safety_checker: StableDiffusionSafetyChecker,
|
107 |
+
feature_extractor: CLIPImageProcessor,
|
108 |
+
requires_safety_checker: bool = True,
|
109 |
+
):
|
110 |
+
super().__init__()
|
111 |
+
|
112 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
113 |
+
deprecation_message = (
|
114 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
115 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
116 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
117 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
118 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
119 |
+
" file"
|
120 |
+
)
|
121 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
122 |
+
new_config = dict(scheduler.config)
|
123 |
+
new_config["steps_offset"] = 1
|
124 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
125 |
+
|
126 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
127 |
+
deprecation_message = (
|
128 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
129 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
130 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
131 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
132 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
133 |
+
)
|
134 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
135 |
+
new_config = dict(scheduler.config)
|
136 |
+
new_config["clip_sample"] = False
|
137 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
138 |
+
|
139 |
+
if safety_checker is None and requires_safety_checker:
|
140 |
+
logger.warning(
|
141 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
142 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
143 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
144 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
145 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
146 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
147 |
+
)
|
148 |
+
|
149 |
+
if safety_checker is not None and feature_extractor is None:
|
150 |
+
raise ValueError(
|
151 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
152 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
153 |
+
)
|
154 |
+
|
155 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
156 |
+
version.parse(unet.config._diffusers_version).base_version
|
157 |
+
) < version.parse("0.9.0.dev0")
|
158 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
159 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
160 |
+
deprecation_message = (
|
161 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
162 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
163 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
164 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
165 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
166 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
167 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
168 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
169 |
+
" the `unet/config.json` file"
|
170 |
+
)
|
171 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
172 |
+
new_config = dict(unet.config)
|
173 |
+
new_config["sample_size"] = 64
|
174 |
+
unet._internal_dict = FrozenDict(new_config)
|
175 |
+
|
176 |
+
self.register_modules(
|
177 |
+
vae=vae,
|
178 |
+
text_encoder=text_encoder,
|
179 |
+
tokenizer=tokenizer,
|
180 |
+
unet=unet,
|
181 |
+
scheduler=scheduler,
|
182 |
+
safety_checker=safety_checker,
|
183 |
+
feature_extractor=feature_extractor,
|
184 |
+
)
|
185 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
186 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
187 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
188 |
+
|
189 |
+
def enable_vae_slicing(self):
|
190 |
+
r"""
|
191 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
192 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
193 |
+
"""
|
194 |
+
self.vae.enable_slicing()
|
195 |
+
|
196 |
+
def disable_vae_slicing(self):
|
197 |
+
r"""
|
198 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
199 |
+
computing decoding in one step.
|
200 |
+
"""
|
201 |
+
self.vae.disable_slicing()
|
202 |
+
|
203 |
+
def enable_vae_tiling(self):
|
204 |
+
r"""
|
205 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
206 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
207 |
+
processing larger images.
|
208 |
+
"""
|
209 |
+
self.vae.enable_tiling()
|
210 |
+
|
211 |
+
def disable_vae_tiling(self):
|
212 |
+
r"""
|
213 |
+
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
214 |
+
computing decoding in one step.
|
215 |
+
"""
|
216 |
+
self.vae.disable_tiling()
|
217 |
+
|
218 |
+
def _encode_prompt(
|
219 |
+
self,
|
220 |
+
prompt,
|
221 |
+
device,
|
222 |
+
num_images_per_prompt,
|
223 |
+
do_classifier_free_guidance,
|
224 |
+
negative_prompt=None,
|
225 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
226 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
227 |
+
lora_scale: Optional[float] = None,
|
228 |
+
):
|
229 |
+
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
|
230 |
+
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
|
231 |
+
|
232 |
+
prompt_embeds_tuple = self.encode_prompt(
|
233 |
+
prompt=prompt,
|
234 |
+
device=device,
|
235 |
+
num_images_per_prompt=num_images_per_prompt,
|
236 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
237 |
+
negative_prompt=negative_prompt,
|
238 |
+
prompt_embeds=prompt_embeds,
|
239 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
240 |
+
lora_scale=lora_scale,
|
241 |
+
)
|
242 |
+
|
243 |
+
# concatenate for backwards comp
|
244 |
+
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
|
245 |
+
|
246 |
+
return prompt_embeds
|
247 |
+
|
248 |
+
def encode_prompt(
|
249 |
+
self,
|
250 |
+
prompt,
|
251 |
+
device,
|
252 |
+
num_images_per_prompt,
|
253 |
+
do_classifier_free_guidance,
|
254 |
+
negative_prompt=None,
|
255 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
256 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
257 |
+
lora_scale: Optional[float] = None,
|
258 |
+
):
|
259 |
+
r"""
|
260 |
+
Encodes the prompt into text encoder hidden states.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
prompt (`str` or `List[str]`, *optional*):
|
264 |
+
prompt to be encoded
|
265 |
+
device: (`torch.device`):
|
266 |
+
torch device
|
267 |
+
num_images_per_prompt (`int`):
|
268 |
+
number of images that should be generated per prompt
|
269 |
+
do_classifier_free_guidance (`bool`):
|
270 |
+
whether to use classifier free guidance or not
|
271 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
272 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
273 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
274 |
+
less than `1`).
|
275 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
276 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
277 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
278 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
279 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
280 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
281 |
+
argument.
|
282 |
+
lora_scale (`float`, *optional*):
|
283 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
284 |
+
"""
|
285 |
+
# set lora scale so that monkey patched LoRA
|
286 |
+
# function of text encoder can correctly access it
|
287 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
288 |
+
self._lora_scale = lora_scale
|
289 |
+
|
290 |
+
# dynamically adjust the LoRA scale
|
291 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
292 |
+
|
293 |
+
if prompt is not None and isinstance(prompt, str):
|
294 |
+
batch_size = 1
|
295 |
+
elif prompt is not None and isinstance(prompt, list):
|
296 |
+
batch_size = len(prompt)
|
297 |
+
else:
|
298 |
+
batch_size = prompt_embeds.shape[0]
|
299 |
+
|
300 |
+
if prompt_embeds is None:
|
301 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
302 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
303 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
304 |
+
|
305 |
+
text_inputs = self.tokenizer(
|
306 |
+
prompt,
|
307 |
+
padding="max_length",
|
308 |
+
max_length=self.tokenizer.model_max_length,
|
309 |
+
truncation=True,
|
310 |
+
return_tensors="pt",
|
311 |
+
)
|
312 |
+
text_input_ids = text_inputs.input_ids
|
313 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
314 |
+
|
315 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
316 |
+
text_input_ids, untruncated_ids
|
317 |
+
):
|
318 |
+
removed_text = self.tokenizer.batch_decode(
|
319 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
320 |
+
)
|
321 |
+
logger.warning(
|
322 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
323 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
324 |
+
)
|
325 |
+
|
326 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
327 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
328 |
+
else:
|
329 |
+
attention_mask = None
|
330 |
+
|
331 |
+
prompt_embeds = self.text_encoder(
|
332 |
+
text_input_ids.to(device),
|
333 |
+
attention_mask=attention_mask,
|
334 |
+
)
|
335 |
+
prompt_embeds = prompt_embeds[0]
|
336 |
+
|
337 |
+
if self.text_encoder is not None:
|
338 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
339 |
+
elif self.unet is not None:
|
340 |
+
prompt_embeds_dtype = self.unet.dtype
|
341 |
+
else:
|
342 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
343 |
+
|
344 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
345 |
+
|
346 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
347 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
348 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
349 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
350 |
+
|
351 |
+
# get unconditional embeddings for classifier free guidance
|
352 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
353 |
+
uncond_tokens: List[str]
|
354 |
+
if negative_prompt is None:
|
355 |
+
uncond_tokens = [""] * batch_size
|
356 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
357 |
+
raise TypeError(
|
358 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
359 |
+
f" {type(prompt)}."
|
360 |
+
)
|
361 |
+
elif isinstance(negative_prompt, str):
|
362 |
+
uncond_tokens = [negative_prompt]
|
363 |
+
elif batch_size != len(negative_prompt):
|
364 |
+
raise ValueError(
|
365 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
366 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
367 |
+
" the batch size of `prompt`."
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
uncond_tokens = negative_prompt
|
371 |
+
|
372 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
373 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
374 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
375 |
+
|
376 |
+
max_length = prompt_embeds.shape[1]
|
377 |
+
uncond_input = self.tokenizer(
|
378 |
+
uncond_tokens,
|
379 |
+
padding="max_length",
|
380 |
+
max_length=max_length,
|
381 |
+
truncation=True,
|
382 |
+
return_tensors="pt",
|
383 |
+
)
|
384 |
+
|
385 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
386 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
387 |
+
else:
|
388 |
+
attention_mask = None
|
389 |
+
|
390 |
+
negative_prompt_embeds = self.text_encoder(
|
391 |
+
uncond_input.input_ids.to(device),
|
392 |
+
attention_mask=attention_mask,
|
393 |
+
)
|
394 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
395 |
+
|
396 |
+
if do_classifier_free_guidance:
|
397 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
398 |
+
seq_len = negative_prompt_embeds.shape[1]
|
399 |
+
|
400 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
401 |
+
|
402 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
403 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
404 |
+
|
405 |
+
return prompt_embeds, negative_prompt_embeds
|
406 |
+
|
407 |
+
def run_safety_checker(self, image, device, dtype):
|
408 |
+
if self.safety_checker is None:
|
409 |
+
has_nsfw_concept = None
|
410 |
+
else:
|
411 |
+
if torch.is_tensor(image):
|
412 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
413 |
+
else:
|
414 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
415 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
416 |
+
image, has_nsfw_concept = self.safety_checker(
|
417 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
418 |
+
)
|
419 |
+
return image, has_nsfw_concept
|
420 |
+
|
421 |
+
def decode_latents(self, latents):
|
422 |
+
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
|
423 |
+
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
|
424 |
+
|
425 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
426 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
427 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
428 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
429 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
430 |
+
return image
|
431 |
+
|
432 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
433 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
434 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
435 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
436 |
+
# and should be between [0, 1]
|
437 |
+
|
438 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
439 |
+
extra_step_kwargs = {}
|
440 |
+
if accepts_eta:
|
441 |
+
extra_step_kwargs["eta"] = eta
|
442 |
+
|
443 |
+
# check if the scheduler accepts generator
|
444 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
445 |
+
if accepts_generator:
|
446 |
+
extra_step_kwargs["generator"] = generator
|
447 |
+
return extra_step_kwargs
|
448 |
+
|
449 |
+
def check_inputs(
|
450 |
+
self,
|
451 |
+
prompt,
|
452 |
+
height,
|
453 |
+
width,
|
454 |
+
callback_steps,
|
455 |
+
negative_prompt=None,
|
456 |
+
prompt_embeds=None,
|
457 |
+
negative_prompt_embeds=None,
|
458 |
+
):
|
459 |
+
if height % 8 != 0 or width % 8 != 0:
|
460 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
461 |
+
|
462 |
+
if (callback_steps is None) or (
|
463 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
464 |
+
):
|
465 |
+
raise ValueError(
|
466 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
467 |
+
f" {type(callback_steps)}."
|
468 |
+
)
|
469 |
+
|
470 |
+
if prompt is not None and prompt_embeds is not None:
|
471 |
+
raise ValueError(
|
472 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
473 |
+
" only forward one of the two."
|
474 |
+
)
|
475 |
+
elif prompt is None and prompt_embeds is None:
|
476 |
+
raise ValueError(
|
477 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
478 |
+
)
|
479 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
480 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
481 |
+
|
482 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
483 |
+
raise ValueError(
|
484 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
485 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
486 |
+
)
|
487 |
+
|
488 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
489 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
490 |
+
raise ValueError(
|
491 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
492 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
493 |
+
f" {negative_prompt_embeds.shape}."
|
494 |
+
)
|
495 |
+
|
496 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
497 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
498 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
499 |
+
raise ValueError(
|
500 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
501 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
502 |
+
)
|
503 |
+
|
504 |
+
if latents is None:
|
505 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
506 |
+
else:
|
507 |
+
latents = latents.to(device)
|
508 |
+
|
509 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
510 |
+
latents = latents * self.scheduler.init_noise_sigma
|
511 |
+
return latents
|
512 |
+
|
513 |
+
@torch.no_grad()
|
514 |
+
# @replace_example_docstring(EXAMPLE_DOC_STRING)
|
515 |
+
def __call__(
|
516 |
+
self,
|
517 |
+
prompt: Union[str, List[str]] = None,
|
518 |
+
height: Optional[int] = None,
|
519 |
+
width: Optional[int] = None,
|
520 |
+
num_inference_steps: int = 50,
|
521 |
+
guidance_scale: float = 7.5,
|
522 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
523 |
+
num_images_per_prompt: Optional[int] = 1,
|
524 |
+
eta: float = 0.0,
|
525 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
526 |
+
latents: Optional[torch.FloatTensor] = None,
|
527 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
528 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
529 |
+
output_type: Optional[str] = "pil",
|
530 |
+
return_dict: bool = True,
|
531 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
532 |
+
callback_steps: int = 1,
|
533 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
534 |
+
guidance_rescale: float = 0.0,
|
535 |
+
):
|
536 |
+
r"""
|
537 |
+
The call function to the pipeline for generation.
|
538 |
+
|
539 |
+
Args:
|
540 |
+
prompt (`str` or `List[str]`, *optional*):
|
541 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
542 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
543 |
+
The height in pixels of the generated image.
|
544 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
545 |
+
The width in pixels of the generated image.
|
546 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
547 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
548 |
+
expense of slower inference.
|
549 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
550 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
551 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
552 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
553 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
554 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
555 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
556 |
+
The number of images to generate per prompt.
|
557 |
+
eta (`float`, *optional*, defaults to 0.0):
|
558 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
559 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
560 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
561 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
562 |
+
generation deterministic.
|
563 |
+
latents (`torch.FloatTensor`, *optional*):
|
564 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
565 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
566 |
+
tensor is generated by sampling using the supplied random `generator`.
|
567 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
568 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
569 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
570 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
571 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
572 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
573 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
574 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
575 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
576 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
577 |
+
plain tuple.
|
578 |
+
callback (`Callable`, *optional*):
|
579 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
580 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
581 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
582 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
583 |
+
every step.
|
584 |
+
cross_attention_kwargs (`dict`, *optional*):
|
585 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
586 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
587 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
588 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
589 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
590 |
+
using zero terminal SNR.
|
591 |
+
|
592 |
+
Examples:
|
593 |
+
|
594 |
+
Returns:
|
595 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
596 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
597 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
598 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
599 |
+
"not-safe-for-work" (nsfw) content.
|
600 |
+
"""
|
601 |
+
# 0. Default height and width to unet
|
602 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
603 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
604 |
+
|
605 |
+
# 1. Check inputs. Raise error if not correct
|
606 |
+
self.check_inputs(
|
607 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
608 |
+
)
|
609 |
+
|
610 |
+
# 2. Define call parameters
|
611 |
+
if prompt is not None and isinstance(prompt, str):
|
612 |
+
batch_size = 1
|
613 |
+
elif prompt is not None and isinstance(prompt, list):
|
614 |
+
batch_size = len(prompt)
|
615 |
+
else:
|
616 |
+
batch_size = prompt_embeds.shape[0]
|
617 |
+
|
618 |
+
device = self._execution_device
|
619 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
620 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
621 |
+
# corresponds to doing no classifier free guidance.
|
622 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
623 |
+
|
624 |
+
# 3. Encode input prompt
|
625 |
+
text_encoder_lora_scale = (
|
626 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
627 |
+
)
|
628 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
629 |
+
prompt,
|
630 |
+
device,
|
631 |
+
num_images_per_prompt,
|
632 |
+
do_classifier_free_guidance,
|
633 |
+
negative_prompt,
|
634 |
+
prompt_embeds=prompt_embeds,
|
635 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
636 |
+
lora_scale=text_encoder_lora_scale,
|
637 |
+
)
|
638 |
+
# For classifier free guidance, we need to do two forward passes.
|
639 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
640 |
+
# to avoid doing two forward passes
|
641 |
+
if do_classifier_free_guidance:
|
642 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
643 |
+
|
644 |
+
# 4. Prepare timesteps
|
645 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
646 |
+
timesteps = self.scheduler.timesteps
|
647 |
+
|
648 |
+
# 5. Prepare latent variables
|
649 |
+
num_channels_latents = self.unet.config.in_channels
|
650 |
+
latents = self.prepare_latents(
|
651 |
+
batch_size * num_images_per_prompt,
|
652 |
+
num_channels_latents,
|
653 |
+
height,
|
654 |
+
width,
|
655 |
+
prompt_embeds.dtype,
|
656 |
+
device,
|
657 |
+
generator,
|
658 |
+
latents,
|
659 |
+
)
|
660 |
+
|
661 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
662 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
663 |
+
|
664 |
+
# 7. Denoising loop
|
665 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
666 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
667 |
+
for i, t in enumerate(timesteps):
|
668 |
+
# expand the latents if we are doing classifier free guidance
|
669 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
670 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
671 |
+
|
672 |
+
# predict the noise residual
|
673 |
+
noise_pred = self.unet(
|
674 |
+
latent_model_input,
|
675 |
+
t,
|
676 |
+
encoder_hidden_states=prompt_embeds,
|
677 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
678 |
+
return_dict=False,
|
679 |
+
)[0]
|
680 |
+
|
681 |
+
# perform guidance
|
682 |
+
if do_classifier_free_guidance:
|
683 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
684 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
685 |
+
|
686 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
687 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
688 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
689 |
+
|
690 |
+
# compute the previous noisy sample x_t -> x_t-1
|
691 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
692 |
+
|
693 |
+
# call the callback, if provided
|
694 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
695 |
+
progress_bar.update()
|
696 |
+
if callback is not None and i % callback_steps == 0:
|
697 |
+
callback(i, t, latents)
|
698 |
+
|
699 |
+
if not output_type == "latent":
|
700 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
701 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
702 |
+
else:
|
703 |
+
image = latents
|
704 |
+
has_nsfw_concept = None
|
705 |
+
|
706 |
+
if has_nsfw_concept is None:
|
707 |
+
do_denormalize = [True] * image.shape[0]
|
708 |
+
else:
|
709 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
710 |
+
|
711 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
712 |
+
|
713 |
+
# Offload all models
|
714 |
+
self.maybe_free_model_hooks()
|
715 |
+
|
716 |
+
if not return_dict:
|
717 |
+
return (image, has_nsfw_concept)
|
718 |
+
|
719 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
src/models/t2i_pipeline.py
ADDED
@@ -0,0 +1,770 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .sd_pipeline import StableDiffusionPipeline
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import List, Union
|
4 |
+
from typing import Optional, Callable, Dict, Any
|
5 |
+
import PIL
|
6 |
+
from .unet_2d_condition import UNet2DConditionModel
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from diffusers.utils import (
|
11 |
+
BaseOutput,
|
12 |
+
)
|
13 |
+
from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class StableDiffusionPipelineOutput(BaseOutput):
|
22 |
+
"""
|
23 |
+
Output class for Stable Diffusion pipelines.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
27 |
+
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
28 |
+
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
29 |
+
nsfw_content_detected (`List[bool]`)
|
30 |
+
List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
31 |
+
(nsfw) content, or `None` if safety checking could not be performed.
|
32 |
+
"""
|
33 |
+
|
34 |
+
images: Union[List[PIL.Image.Image], np.ndarray]
|
35 |
+
nsfw_content_detected: Optional[List[bool]]
|
36 |
+
|
37 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
38 |
+
"""
|
39 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
40 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
41 |
+
"""
|
42 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
43 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
44 |
+
# rescale the results from guidance (fixes overexposure)
|
45 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
46 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
47 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
48 |
+
return noise_cfg
|
49 |
+
|
50 |
+
class StableDiffusionPipelineSpatialAware(StableDiffusionPipeline):
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
vae,
|
54 |
+
text_encoder,
|
55 |
+
tokenizer,
|
56 |
+
unet,
|
57 |
+
scheduler,
|
58 |
+
safety_checker,
|
59 |
+
feature_extractor,
|
60 |
+
requires_safety_checker: bool = True,
|
61 |
+
):
|
62 |
+
unet_new = UNet2DConditionModel(**unet.config)
|
63 |
+
unet_new.load_state_dict(unet.state_dict())
|
64 |
+
|
65 |
+
super().__init__(vae, text_encoder, tokenizer, unet_new, scheduler, safety_checker, feature_extractor, requires_safety_checker)
|
66 |
+
|
67 |
+
def _encode_prompt(
|
68 |
+
self,
|
69 |
+
prompt,
|
70 |
+
device,
|
71 |
+
num_images_per_prompt,
|
72 |
+
do_classifier_free_guidance,
|
73 |
+
negative_prompt=None,
|
74 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
75 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
76 |
+
lora_scale: Optional[float] = None,
|
77 |
+
fg_prompt: Optional[str] = None,
|
78 |
+
):
|
79 |
+
r"""
|
80 |
+
Encodes the prompt into text encoder hidden states.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
prompt (`str` or `List[str]`, *optional*):
|
84 |
+
prompt to be encoded
|
85 |
+
device: (`torch.device`):
|
86 |
+
torch device
|
87 |
+
num_images_per_prompt (`int`):
|
88 |
+
number of images that should be generated per prompt
|
89 |
+
do_classifier_free_guidance (`bool`):
|
90 |
+
whether to use classifier free guidance or not
|
91 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
92 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
93 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
94 |
+
less than `1`).
|
95 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
96 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
97 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
98 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
99 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
100 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
101 |
+
argument.
|
102 |
+
lora_scale (`float`, *optional*):
|
103 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
104 |
+
"""
|
105 |
+
# set lora scale so that monkey patched LoRA
|
106 |
+
# function of text encoder can correctly access it
|
107 |
+
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
|
108 |
+
self._lora_scale = lora_scale
|
109 |
+
|
110 |
+
if prompt is not None and isinstance(prompt, str):
|
111 |
+
batch_size = 1
|
112 |
+
elif prompt is not None and isinstance(prompt, list):
|
113 |
+
batch_size = len(prompt)
|
114 |
+
else:
|
115 |
+
batch_size = prompt_embeds.shape[0]
|
116 |
+
|
117 |
+
if prompt_embeds is None:
|
118 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
119 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
120 |
+
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
121 |
+
|
122 |
+
text_inputs = self.tokenizer(
|
123 |
+
prompt,
|
124 |
+
padding="max_length",
|
125 |
+
max_length=self.tokenizer.model_max_length,
|
126 |
+
truncation=True,
|
127 |
+
return_tensors="pt",
|
128 |
+
)
|
129 |
+
text_input_ids = text_inputs.input_ids
|
130 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
131 |
+
|
132 |
+
|
133 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
134 |
+
text_input_ids, untruncated_ids
|
135 |
+
):
|
136 |
+
removed_text = self.tokenizer.batch_decode(
|
137 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
138 |
+
)
|
139 |
+
logger.warning(
|
140 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
141 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
142 |
+
)
|
143 |
+
|
144 |
+
if fg_prompt is not None:
|
145 |
+
fg_text_inputs = self.tokenizer(
|
146 |
+
fg_prompt,
|
147 |
+
# padding="max_length",
|
148 |
+
# max_length=self.tokenizer.model_max_length,
|
149 |
+
# truncation=True,
|
150 |
+
return_tensors="pt",
|
151 |
+
)
|
152 |
+
# breakpoint()
|
153 |
+
fg_text_input_ids = fg_text_inputs.input_ids
|
154 |
+
|
155 |
+
# remove first and last token
|
156 |
+
fg_text_input_ids = fg_text_input_ids[:,:-1]
|
157 |
+
|
158 |
+
# remove common tokens in fg_text_input_ids from text_input_ids
|
159 |
+
batch_size = text_input_ids.shape[0]
|
160 |
+
# Create a mask that is True wherever a token in text_input_ids matches a token in fg_text_input_ids
|
161 |
+
mask = (text_input_ids.unsqueeze(-1) == fg_text_input_ids.unsqueeze(1)).any(dim=-1)
|
162 |
+
# Get the values from text_input_ids that are not in fg_text_input_ids
|
163 |
+
encoder_attention_mask = ~mask
|
164 |
+
encoder_attention_mask = encoder_attention_mask.repeat((2,1))
|
165 |
+
encoder_attention_mask = encoder_attention_mask.to(device)
|
166 |
+
|
167 |
+
# text_input_ids_filtered = text_input_ids[~mask].view(1, -1)
|
168 |
+
# text_input_ids_filtered will now contain the values from text_input_ids that aren't in fg_text_input_ids
|
169 |
+
|
170 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
171 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
172 |
+
else:
|
173 |
+
attention_mask = None
|
174 |
+
|
175 |
+
prompt_embeds = self.text_encoder(
|
176 |
+
text_input_ids.to(device),
|
177 |
+
attention_mask=attention_mask,
|
178 |
+
# attention_mask=encoder_attention_mask[:batch_size] if fg_prompt is not None else None,
|
179 |
+
)
|
180 |
+
prompt_embeds = prompt_embeds[0]
|
181 |
+
|
182 |
+
if self.text_encoder is not None:
|
183 |
+
prompt_embeds_dtype = self.text_encoder.dtype
|
184 |
+
elif self.unet is not None:
|
185 |
+
prompt_embeds_dtype = self.unet.dtype
|
186 |
+
else:
|
187 |
+
prompt_embeds_dtype = prompt_embeds.dtype
|
188 |
+
|
189 |
+
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
190 |
+
|
191 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
192 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
193 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
194 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
195 |
+
|
196 |
+
# get unconditional embeddings for classifier free guidance
|
197 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
198 |
+
uncond_tokens: List[str]
|
199 |
+
if negative_prompt is None:
|
200 |
+
uncond_tokens = [""] * batch_size
|
201 |
+
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
202 |
+
raise TypeError(
|
203 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
204 |
+
f" {type(prompt)}."
|
205 |
+
)
|
206 |
+
elif isinstance(negative_prompt, str):
|
207 |
+
uncond_tokens = [negative_prompt]
|
208 |
+
elif batch_size != len(negative_prompt):
|
209 |
+
raise ValueError(
|
210 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
211 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
212 |
+
" the batch size of `prompt`."
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
uncond_tokens = negative_prompt
|
216 |
+
|
217 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
218 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
219 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
220 |
+
|
221 |
+
max_length = prompt_embeds.shape[1]
|
222 |
+
uncond_input = self.tokenizer(
|
223 |
+
uncond_tokens,
|
224 |
+
padding="max_length",
|
225 |
+
max_length=max_length,
|
226 |
+
truncation=True,
|
227 |
+
return_tensors="pt",
|
228 |
+
)
|
229 |
+
|
230 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
231 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
232 |
+
else:
|
233 |
+
attention_mask = None
|
234 |
+
|
235 |
+
negative_prompt_embeds = self.text_encoder(
|
236 |
+
uncond_input.input_ids.to(device),
|
237 |
+
attention_mask=attention_mask,
|
238 |
+
)
|
239 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
240 |
+
|
241 |
+
if do_classifier_free_guidance:
|
242 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
243 |
+
seq_len = negative_prompt_embeds.shape[1]
|
244 |
+
|
245 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
246 |
+
|
247 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
248 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
249 |
+
|
250 |
+
# For classifier free guidance, we need to do two forward passes.
|
251 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
252 |
+
# to avoid doing two forward passes
|
253 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
254 |
+
|
255 |
+
if fg_prompt is not None:
|
256 |
+
return prompt_embeds, encoder_attention_mask
|
257 |
+
return prompt_embeds, None
|
258 |
+
|
259 |
+
@torch.no_grad()
|
260 |
+
def __call__(
|
261 |
+
self,
|
262 |
+
prompt: Union[str, List[str]] = None,
|
263 |
+
height: Optional[int] = None,
|
264 |
+
width: Optional[int] = None,
|
265 |
+
num_inference_steps: int = 50,
|
266 |
+
guidance_scale: float = 7.5,
|
267 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
268 |
+
num_images_per_prompt: Optional[int] = 1,
|
269 |
+
eta: float = 0.0,
|
270 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
271 |
+
latents: Optional[torch.FloatTensor] = None,
|
272 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
273 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
274 |
+
output_type: Optional[str] = "pil",
|
275 |
+
return_dict: bool = True,
|
276 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
277 |
+
callback_steps: int = 1,
|
278 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
279 |
+
guidance_rescale: float = 0.0,
|
280 |
+
frozen_mask: Optional[torch.FloatTensor] = None,
|
281 |
+
frozen_steps: Optional[int] = None,
|
282 |
+
frozen_text_mask: Optional[torch.FloatTensor] = None,
|
283 |
+
frozen_prompt: Optional[Union[str, List[str]]] = None,
|
284 |
+
custom_attention_mask: Optional[torch.FloatTensor] = None,
|
285 |
+
latents_all_input: Optional[torch.FloatTensor] = None,
|
286 |
+
fg_prompt: Optional[str] = None,
|
287 |
+
make_attention_mask_2d=False,
|
288 |
+
attention_mask_block_diagonal=False,
|
289 |
+
):
|
290 |
+
r"""
|
291 |
+
The call function to the pipeline for generation.
|
292 |
+
|
293 |
+
Args:
|
294 |
+
prompt (`str` or `List[str]`, *optional*):
|
295 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
296 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
297 |
+
The height in pixels of the generated image.
|
298 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
299 |
+
The width in pixels of the generated image.
|
300 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
301 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
302 |
+
expense of slower inference.
|
303 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
304 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
305 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
306 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
307 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
308 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
309 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
310 |
+
The number of images to generate per prompt.
|
311 |
+
eta (`float`, *optional*, defaults to 0.0):
|
312 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
313 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
314 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
315 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
316 |
+
generation deterministic.
|
317 |
+
latents (`torch.FloatTensor`, *optional*):
|
318 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
319 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
320 |
+
tensor is generated by sampling using the supplied random `generator`.
|
321 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
322 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
323 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
324 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
325 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
326 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
327 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
328 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
329 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
330 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
331 |
+
plain tuple.
|
332 |
+
callback (`Callable`, *optional*):
|
333 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
334 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
335 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
336 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
337 |
+
every step.
|
338 |
+
cross_attention_kwargs (`dict`, *optional*):
|
339 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
340 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
341 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
342 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
343 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
344 |
+
using zero terminal SNR.
|
345 |
+
|
346 |
+
Examples:
|
347 |
+
|
348 |
+
Returns:
|
349 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
350 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
351 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
352 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
353 |
+
"not-safe-for-work" (nsfw) content.
|
354 |
+
"""
|
355 |
+
# 0. Default height and width to unet
|
356 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
357 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
358 |
+
|
359 |
+
# 1. Check inputs. Raise error if not correct
|
360 |
+
self.check_inputs(
|
361 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
362 |
+
)
|
363 |
+
|
364 |
+
# 2. Define call parameters
|
365 |
+
if prompt is not None and isinstance(prompt, str):
|
366 |
+
batch_size = 1
|
367 |
+
elif prompt is not None and isinstance(prompt, list):
|
368 |
+
batch_size = len(prompt)
|
369 |
+
else:
|
370 |
+
batch_size = prompt_embeds.shape[0]
|
371 |
+
|
372 |
+
device = self._execution_device
|
373 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
374 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
375 |
+
# corresponds to doing no classifier free guidance.
|
376 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
377 |
+
|
378 |
+
# 3. Encode input prompt
|
379 |
+
text_encoder_lora_scale = (
|
380 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
381 |
+
)
|
382 |
+
|
383 |
+
prompt_embeds, custom_attention_mask = self._encode_prompt(
|
384 |
+
prompt,
|
385 |
+
device,
|
386 |
+
num_images_per_prompt,
|
387 |
+
do_classifier_free_guidance,
|
388 |
+
negative_prompt,
|
389 |
+
prompt_embeds=prompt_embeds,
|
390 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
391 |
+
lora_scale=text_encoder_lora_scale,
|
392 |
+
fg_prompt=fg_prompt,
|
393 |
+
)
|
394 |
+
if frozen_prompt is not None: # freeze the prompt
|
395 |
+
prompt_embeds, _ = self._encode_prompt(
|
396 |
+
frozen_prompt,
|
397 |
+
device,
|
398 |
+
num_images_per_prompt,
|
399 |
+
do_classifier_free_guidance,
|
400 |
+
negative_prompt,
|
401 |
+
prompt_embeds=None,
|
402 |
+
negative_prompt_embeds=None,
|
403 |
+
lora_scale=text_encoder_lora_scale,
|
404 |
+
)
|
405 |
+
|
406 |
+
# 4. Prepare timesteps
|
407 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
408 |
+
timesteps = self.scheduler.timesteps
|
409 |
+
|
410 |
+
# 5. Prepare latent variables
|
411 |
+
num_channels_latents = self.unet.config.in_channels
|
412 |
+
latents = self.prepare_latents(
|
413 |
+
batch_size * num_images_per_prompt,
|
414 |
+
num_channels_latents,
|
415 |
+
height,
|
416 |
+
width,
|
417 |
+
prompt_embeds.dtype,
|
418 |
+
device,
|
419 |
+
generator,
|
420 |
+
latents,
|
421 |
+
)
|
422 |
+
|
423 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
424 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
425 |
+
if frozen_mask is not None:
|
426 |
+
attention_mask = frozen_mask.clone() # (1, 1, 96, 96)
|
427 |
+
attention_mask = attention_mask.view(attention_mask.shape[0], -1).repeat((2,1)).to(frozen_mask.device) # torch.Size([2, 9216])
|
428 |
+
attention_mask = attention_mask.bool()
|
429 |
+
# attention_mask = ~attention_mask
|
430 |
+
# if custom_attention_mask is not None:
|
431 |
+
# custom_attention_mask = ~custom_attention_mask
|
432 |
+
# 7. Denoising loop
|
433 |
+
latents_all = []
|
434 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
435 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
436 |
+
iter_t = iter(timesteps)
|
437 |
+
for i, t in enumerate(iter_t):
|
438 |
+
# expand the latents if we are doing classifier free guidance
|
439 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
440 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
441 |
+
# torch.save(i, 'i.pt')
|
442 |
+
|
443 |
+
# if attention_mask is not None:
|
444 |
+
# attention_mask=~attention_mask #fg deactivated at cnt%2==0
|
445 |
+
# if custom_attention_mask is not None:
|
446 |
+
# custom_attention_mask=~custom_attention_mask #fg deactivated at cnt%2==0
|
447 |
+
|
448 |
+
# predict the noise residual
|
449 |
+
noise_pred = self.unet(
|
450 |
+
latent_model_input,
|
451 |
+
t,
|
452 |
+
encoder_hidden_states=prompt_embeds,
|
453 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
454 |
+
return_dict=False,
|
455 |
+
encoder_attention_mask=custom_attention_mask if custom_attention_mask is not None and i < frozen_steps else None,
|
456 |
+
attention_mask=attention_mask if frozen_steps is not None and i < frozen_steps else None,
|
457 |
+
make_2d_attention_mask=make_attention_mask_2d,
|
458 |
+
block_diagonal_attention=attention_mask_block_diagonal,
|
459 |
+
)[0]
|
460 |
+
|
461 |
+
# perform guidance
|
462 |
+
if do_classifier_free_guidance:
|
463 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
464 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
465 |
+
|
466 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
467 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
468 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
469 |
+
|
470 |
+
# compute the previous noisy sample x_t -> x_t-1
|
471 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
472 |
+
|
473 |
+
latents_all.append(latents)
|
474 |
+
|
475 |
+
# put frozen latents back
|
476 |
+
if frozen_mask is not None and i < frozen_steps:
|
477 |
+
# breakpoint()
|
478 |
+
# latents = latents_all_input[i+1:i+2,...] * frozen_mask + latents * (1. - frozen_mask)
|
479 |
+
pass
|
480 |
+
|
481 |
+
# update the prompt_embeds after the frozen_steps to consider the whole prompt, including fg_prompt
|
482 |
+
if frozen_steps is not None and i == frozen_steps:
|
483 |
+
prompt_embeds, _ = self._encode_prompt(
|
484 |
+
prompt,
|
485 |
+
device,
|
486 |
+
num_images_per_prompt,
|
487 |
+
do_classifier_free_guidance,
|
488 |
+
negative_prompt,
|
489 |
+
prompt_embeds=None,
|
490 |
+
negative_prompt_embeds=None,
|
491 |
+
lora_scale=text_encoder_lora_scale,
|
492 |
+
fg_prompt=None,
|
493 |
+
)
|
494 |
+
# call the callback, if provided
|
495 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
496 |
+
progress_bar.update()
|
497 |
+
if callback is not None and i % callback_steps == 0:
|
498 |
+
callback(i, t, latents)
|
499 |
+
|
500 |
+
# try:
|
501 |
+
# if i in [29,30,40,49]:
|
502 |
+
# tmp = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
503 |
+
# do_denormalize = [True] * tmp.shape[0]
|
504 |
+
# tmp = self.image_processor.postprocess(tmp, output_type=output_type, do_denormalize=do_denormalize)
|
505 |
+
# tmp_prompt = torch.load('prompt.pt')
|
506 |
+
# tmp[0].save(f'./demo15/im-{tmp_prompt}-{i}.png')
|
507 |
+
# except:
|
508 |
+
# pass
|
509 |
+
|
510 |
+
if not output_type == "latent":
|
511 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
512 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
513 |
+
else:
|
514 |
+
# image = latents
|
515 |
+
latents_all = torch.cat(latents_all, dim=0) # (num_inference_steps, num_channels_latents, height, width) assume batch_size=1
|
516 |
+
image = latents_all
|
517 |
+
has_nsfw_concept = None
|
518 |
+
|
519 |
+
if has_nsfw_concept is None:
|
520 |
+
do_denormalize = [True] * image.shape[0]
|
521 |
+
else:
|
522 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
523 |
+
|
524 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
525 |
+
|
526 |
+
# Offload last model to CPU
|
527 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
528 |
+
self.final_offload_hook.offload()
|
529 |
+
|
530 |
+
if not return_dict:
|
531 |
+
return (image, has_nsfw_concept)
|
532 |
+
|
533 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
534 |
+
|
535 |
+
'''
|
536 |
+
@torch.no_grad()
|
537 |
+
def __call__latestNotCalledForNow(
|
538 |
+
self,
|
539 |
+
prompt: Union[str, List[str]] = None,
|
540 |
+
height: Optional[int] = None,
|
541 |
+
width: Optional[int] = None,
|
542 |
+
num_inference_steps: int = 50,
|
543 |
+
guidance_scale: float = 7.5,
|
544 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
545 |
+
num_images_per_prompt: Optional[int] = 1,
|
546 |
+
eta: float = 0.0,
|
547 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
548 |
+
latents: Optional[torch.FloatTensor] = None,
|
549 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
550 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
551 |
+
output_type: Optional[str] = "pil",
|
552 |
+
return_dict: bool = True,
|
553 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
554 |
+
callback_steps: int = 1,
|
555 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
556 |
+
guidance_rescale: float = 0.0,
|
557 |
+
frozen_mask: Optional[torch.FloatTensor] = None,
|
558 |
+
frozen_steps: Optional[int] = None,
|
559 |
+
frozen_text_mask: Optional[torch.FloatTensor] = None,
|
560 |
+
frozen_prompt: Optional[Union[str, List[str]]] = None,
|
561 |
+
custom_attention_mask: Optional[torch.FloatTensor] = None,
|
562 |
+
latents_all_input: Optional[torch.FloatTensor] = None,
|
563 |
+
):
|
564 |
+
r"""
|
565 |
+
The call function to the pipeline for generation.
|
566 |
+
|
567 |
+
Args:
|
568 |
+
prompt (`str` or `List[str]`, *optional*):
|
569 |
+
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
570 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
571 |
+
The height in pixels of the generated image.
|
572 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
573 |
+
The width in pixels of the generated image.
|
574 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
575 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
576 |
+
expense of slower inference.
|
577 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
578 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
579 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
580 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
581 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
582 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
583 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
584 |
+
The number of images to generate per prompt.
|
585 |
+
eta (`float`, *optional*, defaults to 0.0):
|
586 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
587 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
588 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
589 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
590 |
+
generation deterministic.
|
591 |
+
latents (`torch.FloatTensor`, *optional*):
|
592 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
593 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
594 |
+
tensor is generated by sampling using the supplied random `generator`.
|
595 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
596 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
597 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
598 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
599 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
600 |
+
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
601 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
602 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
603 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
604 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
605 |
+
plain tuple.
|
606 |
+
callback (`Callable`, *optional*):
|
607 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
608 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
609 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
610 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
611 |
+
every step.
|
612 |
+
cross_attention_kwargs (`dict`, *optional*):
|
613 |
+
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
614 |
+
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
615 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
616 |
+
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
617 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
|
618 |
+
using zero terminal SNR.
|
619 |
+
|
620 |
+
Examples:
|
621 |
+
|
622 |
+
Returns:
|
623 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
624 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
625 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
626 |
+
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
627 |
+
"not-safe-for-work" (nsfw) content.
|
628 |
+
"""
|
629 |
+
# 0. Default height and width to unet
|
630 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
631 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
632 |
+
|
633 |
+
# 1. Check inputs. Raise error if not correct
|
634 |
+
self.check_inputs(
|
635 |
+
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
636 |
+
)
|
637 |
+
|
638 |
+
# 2. Define call parameters
|
639 |
+
if prompt is not None and isinstance(prompt, str):
|
640 |
+
batch_size = 1
|
641 |
+
elif prompt is not None and isinstance(prompt, list):
|
642 |
+
batch_size = len(prompt)
|
643 |
+
else:
|
644 |
+
batch_size = prompt_embeds.shape[0]
|
645 |
+
|
646 |
+
device = self._execution_device
|
647 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
648 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
649 |
+
# corresponds to doing no classifier free guidance.
|
650 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
651 |
+
|
652 |
+
# 3. Encode input prompt
|
653 |
+
text_encoder_lora_scale = (
|
654 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
655 |
+
)
|
656 |
+
prompt_embeds = self._encode_prompt(
|
657 |
+
prompt,
|
658 |
+
device,
|
659 |
+
num_images_per_prompt,
|
660 |
+
do_classifier_free_guidance,
|
661 |
+
negative_prompt,
|
662 |
+
prompt_embeds=prompt_embeds,
|
663 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
664 |
+
lora_scale=text_encoder_lora_scale,
|
665 |
+
)
|
666 |
+
|
667 |
+
if frozen_prompt is not None: # freeze the prompt
|
668 |
+
frozen_prompt_embeds = self._encode_prompt(
|
669 |
+
frozen_prompt,
|
670 |
+
device,
|
671 |
+
num_images_per_prompt,
|
672 |
+
do_classifier_free_guidance,
|
673 |
+
negative_prompt,
|
674 |
+
prompt_embeds=prompt_embeds,
|
675 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
676 |
+
lora_scale=text_encoder_lora_scale,
|
677 |
+
)
|
678 |
+
else:
|
679 |
+
frozen_prompt_embeds = None
|
680 |
+
# For classifier free guidance, we need to do two forward passes.
|
681 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
682 |
+
# to avoid doing two forward passes
|
683 |
+
if do_classifier_free_guidance:
|
684 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
685 |
+
|
686 |
+
# 4. Prepare timesteps
|
687 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
688 |
+
timesteps = self.scheduler.timesteps
|
689 |
+
|
690 |
+
# 5. Prepare latent variables
|
691 |
+
num_channels_latents = self.unet.config.in_channels
|
692 |
+
latents = self.prepare_latents(
|
693 |
+
batch_size * num_images_per_prompt,
|
694 |
+
num_channels_latents,
|
695 |
+
height,
|
696 |
+
width,
|
697 |
+
prompt_embeds.dtype,
|
698 |
+
device,
|
699 |
+
generator,
|
700 |
+
latents,
|
701 |
+
)
|
702 |
+
print(latents.shape)
|
703 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
704 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
705 |
+
|
706 |
+
# 7. Denoising loop
|
707 |
+
latents_all = []
|
708 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
709 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
710 |
+
for i, t in enumerate(timesteps):
|
711 |
+
# expand the latents if we are doing classifier free guidance
|
712 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
713 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
714 |
+
|
715 |
+
# predict the noise residual
|
716 |
+
noise_pred = self.unet(
|
717 |
+
latent_model_input,
|
718 |
+
t,
|
719 |
+
encoder_hidden_states=prompt_embeds,
|
720 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
721 |
+
return_dict=False,
|
722 |
+
# attention_mask=custom_attention_mask if custom_attention_mask is not None and i < frozen_steps else None,
|
723 |
+
)[0]
|
724 |
+
|
725 |
+
# perform guidance
|
726 |
+
if do_classifier_free_guidance:
|
727 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
728 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
729 |
+
|
730 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
731 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
732 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
733 |
+
|
734 |
+
# compute the previous noisy sample x_t -> x_t-1
|
735 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
736 |
+
latents_all.append(latents)
|
737 |
+
|
738 |
+
# put frozen latents back
|
739 |
+
if frozen_mask is not None and i < frozen_steps:
|
740 |
+
latents = latents_all_input[i+1:i+2,...] * frozen_mask + latents * (1. - frozen_mask)
|
741 |
+
|
742 |
+
# call the callback, if provided
|
743 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
744 |
+
progress_bar.update()
|
745 |
+
if callback is not None and i % callback_steps == 0:
|
746 |
+
callback(i, t, latents)
|
747 |
+
|
748 |
+
if not output_type == "latent":
|
749 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
750 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
751 |
+
else:
|
752 |
+
# image = latents
|
753 |
+
latents_all = torch.cat(latents_all, dim=0) # (num_inference_steps, num_channels_latents, height, width) assume batch_size=1
|
754 |
+
has_nsfw_concept = None
|
755 |
+
|
756 |
+
if has_nsfw_concept is None:
|
757 |
+
do_denormalize = [True] * image.shape[0]
|
758 |
+
else:
|
759 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
760 |
+
|
761 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
762 |
+
|
763 |
+
# Offload all models
|
764 |
+
self.maybe_free_model_hooks()
|
765 |
+
|
766 |
+
if not return_dict:
|
767 |
+
return (image, has_nsfw_concept)
|
768 |
+
|
769 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
770 |
+
'''
|
src/models/transformer_2d.py
ADDED
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
from diffusers.models.embeddings import PatchEmbed
|
25 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
26 |
+
from diffusers.models.modeling_utils import ModelMixin
|
27 |
+
|
28 |
+
from .attention import BasicTransformerBlock
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class Transformer2DModelOutput(BaseOutput):
|
32 |
+
"""
|
33 |
+
The output of [`Transformer2DModel`].
|
34 |
+
|
35 |
+
Args:
|
36 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
37 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
38 |
+
distributions for the unnoised latent pixels.
|
39 |
+
"""
|
40 |
+
|
41 |
+
sample: torch.FloatTensor
|
42 |
+
|
43 |
+
|
44 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
45 |
+
"""
|
46 |
+
A 2D Transformer model for image-like data.
|
47 |
+
|
48 |
+
Parameters:
|
49 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
50 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
51 |
+
in_channels (`int`, *optional*):
|
52 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
53 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
54 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
55 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
56 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
57 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
58 |
+
num_vector_embeds (`int`, *optional*):
|
59 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
60 |
+
Includes the class for the masked latent pixel.
|
61 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
62 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
63 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
64 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
65 |
+
added to the hidden states.
|
66 |
+
|
67 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
68 |
+
attention_bias (`bool`, *optional*):
|
69 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
70 |
+
"""
|
71 |
+
|
72 |
+
@register_to_config
|
73 |
+
def __init__(
|
74 |
+
self,
|
75 |
+
num_attention_heads: int = 16,
|
76 |
+
attention_head_dim: int = 88,
|
77 |
+
in_channels: Optional[int] = None,
|
78 |
+
out_channels: Optional[int] = None,
|
79 |
+
num_layers: int = 1,
|
80 |
+
dropout: float = 0.0,
|
81 |
+
norm_num_groups: int = 32,
|
82 |
+
cross_attention_dim: Optional[int] = None,
|
83 |
+
attention_bias: bool = False,
|
84 |
+
sample_size: Optional[int] = None,
|
85 |
+
num_vector_embeds: Optional[int] = None,
|
86 |
+
patch_size: Optional[int] = None,
|
87 |
+
activation_fn: str = "geglu",
|
88 |
+
num_embeds_ada_norm: Optional[int] = None,
|
89 |
+
use_linear_projection: bool = False,
|
90 |
+
only_cross_attention: bool = False,
|
91 |
+
double_self_attention: bool = False,
|
92 |
+
upcast_attention: bool = False,
|
93 |
+
norm_type: str = "layer_norm",
|
94 |
+
norm_elementwise_affine: bool = True,
|
95 |
+
attention_type: str = "default",
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
self.use_linear_projection = use_linear_projection
|
99 |
+
self.num_attention_heads = num_attention_heads
|
100 |
+
self.attention_head_dim = attention_head_dim
|
101 |
+
inner_dim = num_attention_heads * attention_head_dim
|
102 |
+
|
103 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
104 |
+
# Define whether input is continuous or discrete depending on configuration
|
105 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
106 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
107 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
108 |
+
|
109 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
110 |
+
deprecation_message = (
|
111 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
112 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
113 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
114 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
115 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
116 |
+
)
|
117 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
118 |
+
norm_type = "ada_norm"
|
119 |
+
|
120 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
121 |
+
raise ValueError(
|
122 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
123 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
124 |
+
)
|
125 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
126 |
+
raise ValueError(
|
127 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
128 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
129 |
+
)
|
130 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
131 |
+
raise ValueError(
|
132 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
133 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
134 |
+
)
|
135 |
+
|
136 |
+
# 2. Define input layers
|
137 |
+
if self.is_input_continuous:
|
138 |
+
self.in_channels = in_channels
|
139 |
+
|
140 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
141 |
+
if use_linear_projection:
|
142 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
143 |
+
else:
|
144 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
145 |
+
elif self.is_input_vectorized:
|
146 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
147 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
148 |
+
|
149 |
+
self.height = sample_size
|
150 |
+
self.width = sample_size
|
151 |
+
self.num_vector_embeds = num_vector_embeds
|
152 |
+
self.num_latent_pixels = self.height * self.width
|
153 |
+
|
154 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
155 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
156 |
+
)
|
157 |
+
elif self.is_input_patches:
|
158 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
159 |
+
|
160 |
+
self.height = sample_size
|
161 |
+
self.width = sample_size
|
162 |
+
|
163 |
+
self.patch_size = patch_size
|
164 |
+
self.pos_embed = PatchEmbed(
|
165 |
+
height=sample_size,
|
166 |
+
width=sample_size,
|
167 |
+
patch_size=patch_size,
|
168 |
+
in_channels=in_channels,
|
169 |
+
embed_dim=inner_dim,
|
170 |
+
)
|
171 |
+
|
172 |
+
# 3. Define transformers blocks
|
173 |
+
self.transformer_blocks = nn.ModuleList(
|
174 |
+
[
|
175 |
+
BasicTransformerBlock(
|
176 |
+
inner_dim,
|
177 |
+
num_attention_heads,
|
178 |
+
attention_head_dim,
|
179 |
+
dropout=dropout,
|
180 |
+
cross_attention_dim=cross_attention_dim,
|
181 |
+
activation_fn=activation_fn,
|
182 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
183 |
+
attention_bias=attention_bias,
|
184 |
+
only_cross_attention=only_cross_attention,
|
185 |
+
double_self_attention=double_self_attention,
|
186 |
+
upcast_attention=upcast_attention,
|
187 |
+
norm_type=norm_type,
|
188 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
189 |
+
attention_type=attention_type,
|
190 |
+
)
|
191 |
+
for d in range(num_layers)
|
192 |
+
]
|
193 |
+
)
|
194 |
+
|
195 |
+
# 4. Define output layers
|
196 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
197 |
+
if self.is_input_continuous:
|
198 |
+
# TODO: should use out_channels for continuous projections
|
199 |
+
if use_linear_projection:
|
200 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
201 |
+
else:
|
202 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
203 |
+
elif self.is_input_vectorized:
|
204 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
205 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
206 |
+
elif self.is_input_patches:
|
207 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
208 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
209 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
210 |
+
|
211 |
+
self.gradient_checkpointing = False
|
212 |
+
|
213 |
+
def forward(
|
214 |
+
self,
|
215 |
+
hidden_states: torch.Tensor,
|
216 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
217 |
+
timestep: Optional[torch.LongTensor] = None,
|
218 |
+
class_labels: Optional[torch.LongTensor] = None,
|
219 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
220 |
+
attention_mask: Optional[torch.Tensor] = None,
|
221 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
222 |
+
return_dict: bool = True,
|
223 |
+
**kwargs,
|
224 |
+
|
225 |
+
):
|
226 |
+
"""
|
227 |
+
The [`Transformer2DModel`] forward method.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
231 |
+
Input `hidden_states`.
|
232 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
233 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
234 |
+
self-attention.
|
235 |
+
timestep ( `torch.LongTensor`, *optional*):
|
236 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
237 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
238 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
239 |
+
`AdaLayerZeroNorm`.
|
240 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
241 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
242 |
+
|
243 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
244 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
245 |
+
|
246 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
247 |
+
above. This bias will be added to the cross-attention scores.
|
248 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
249 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
250 |
+
tuple.
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
254 |
+
`tuple` where the first element is the sample tensor.
|
255 |
+
"""
|
256 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
257 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
258 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
259 |
+
# expects mask of shape:
|
260 |
+
# [batch, key_tokens]
|
261 |
+
# adds singleton query_tokens dimension:
|
262 |
+
# [batch, 1, key_tokens]
|
263 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
264 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
265 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
266 |
+
if attention_mask is not None and not isinstance(attention_mask, list):
|
267 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
268 |
+
# assume that mask is expressed as:
|
269 |
+
# (1 = keep, 0 = discard)
|
270 |
+
# convert mask into a bias that can be added to attention scores:
|
271 |
+
# (keep = +0, discard = -10000.0)
|
272 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
273 |
+
attention_mask = attention_mask.unsqueeze(1)
|
274 |
+
|
275 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
276 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
277 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
278 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
279 |
+
elif attention_mask is not None:
|
280 |
+
if attention_mask[0].ndim == 2:
|
281 |
+
attention_mask = [(1 - mask.to(hidden_states.dtype)) * -10000.0 for mask in attention_mask]
|
282 |
+
attention_mask = [mask.unsqueeze(1) for mask in attention_mask]
|
283 |
+
if encoder_attention_mask is not None and encoder_attention_mask[0].ndim == 2:
|
284 |
+
encoder_attention_mask = [(1 - mask.to(hidden_states.dtype)) * -10000.0 for mask in encoder_attention_mask]
|
285 |
+
encoder_attention_mask = [mask.unsqueeze(1) for mask in encoder_attention_mask]
|
286 |
+
|
287 |
+
# Retrieve lora scale.
|
288 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
289 |
+
|
290 |
+
# 1. Input
|
291 |
+
if self.is_input_continuous:
|
292 |
+
batch, _, height, width = hidden_states.shape
|
293 |
+
residual = hidden_states
|
294 |
+
|
295 |
+
hidden_states = self.norm(hidden_states)
|
296 |
+
if not self.use_linear_projection:
|
297 |
+
hidden_states = self.proj_in(hidden_states, lora_scale)
|
298 |
+
inner_dim = hidden_states.shape[1]
|
299 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
300 |
+
else:
|
301 |
+
inner_dim = hidden_states.shape[1]
|
302 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
303 |
+
hidden_states = self.proj_in(hidden_states, scale=lora_scale)
|
304 |
+
|
305 |
+
elif self.is_input_vectorized:
|
306 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
307 |
+
elif self.is_input_patches:
|
308 |
+
hidden_states = self.pos_embed(hidden_states)
|
309 |
+
|
310 |
+
# 2. Blocks
|
311 |
+
for block in self.transformer_blocks:
|
312 |
+
if self.training and self.gradient_checkpointing:
|
313 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
314 |
+
block,
|
315 |
+
hidden_states,
|
316 |
+
attention_mask,
|
317 |
+
encoder_hidden_states,
|
318 |
+
encoder_attention_mask,
|
319 |
+
timestep,
|
320 |
+
cross_attention_kwargs,
|
321 |
+
class_labels,
|
322 |
+
use_reentrant=False,
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
|
326 |
+
hidden_states = block(
|
327 |
+
hidden_states,
|
328 |
+
attention_mask=attention_mask,
|
329 |
+
encoder_hidden_states=encoder_hidden_states,
|
330 |
+
encoder_attention_mask=encoder_attention_mask,
|
331 |
+
timestep=timestep,
|
332 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
333 |
+
class_labels=class_labels,
|
334 |
+
**kwargs,
|
335 |
+
|
336 |
+
)
|
337 |
+
|
338 |
+
# 3. Output
|
339 |
+
if self.is_input_continuous:
|
340 |
+
if not self.use_linear_projection:
|
341 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
342 |
+
hidden_states = self.proj_out(hidden_states, scale=lora_scale)
|
343 |
+
else:
|
344 |
+
hidden_states = self.proj_out(hidden_states, scale=lora_scale)
|
345 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
346 |
+
|
347 |
+
output = hidden_states + residual
|
348 |
+
elif self.is_input_vectorized:
|
349 |
+
hidden_states = self.norm_out(hidden_states)
|
350 |
+
logits = self.out(hidden_states)
|
351 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
352 |
+
logits = logits.permute(0, 2, 1)
|
353 |
+
|
354 |
+
# log(p(x_0))
|
355 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
356 |
+
elif self.is_input_patches:
|
357 |
+
# TODO: cleanup!
|
358 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
359 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
360 |
+
)
|
361 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
362 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
363 |
+
hidden_states = self.proj_out_2(hidden_states)
|
364 |
+
|
365 |
+
# unpatchify
|
366 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
367 |
+
hidden_states = hidden_states.reshape(
|
368 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
369 |
+
)
|
370 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
371 |
+
output = hidden_states.reshape(
|
372 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
373 |
+
)
|
374 |
+
|
375 |
+
if not return_dict:
|
376 |
+
return (output,)
|
377 |
+
|
378 |
+
return Transformer2DModelOutput(sample=output)
|
src/models/transformer_temporal.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
import math
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.utils import BaseOutput
|
23 |
+
from diffusers.models.modeling_utils import ModelMixin
|
24 |
+
|
25 |
+
from .attention import BasicTransformerBlock
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class TransformerTemporalModelOutput(BaseOutput):
|
29 |
+
"""
|
30 |
+
The output of [`TransformerTemporalModel`].
|
31 |
+
|
32 |
+
Args:
|
33 |
+
sample (`torch.FloatTensor` of shape `(batch_size x num_frames, num_channels, height, width)`):
|
34 |
+
The hidden states output conditioned on `encoder_hidden_states` input.
|
35 |
+
"""
|
36 |
+
|
37 |
+
sample: torch.FloatTensor
|
38 |
+
|
39 |
+
|
40 |
+
class TransformerTemporalModel(ModelMixin, ConfigMixin):
|
41 |
+
"""
|
42 |
+
A Transformer model for video-like data.
|
43 |
+
|
44 |
+
Parameters:
|
45 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
46 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
47 |
+
in_channels (`int`, *optional*):
|
48 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
49 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
50 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
51 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
52 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
53 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
54 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
55 |
+
attention_bias (`bool`, *optional*):
|
56 |
+
Configure if the `TransformerBlock` attention should contain a bias parameter.
|
57 |
+
double_self_attention (`bool`, *optional*):
|
58 |
+
Configure if each `TransformerBlock` should contain two self-attention layers.
|
59 |
+
"""
|
60 |
+
|
61 |
+
@register_to_config
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
num_attention_heads: int = 16,
|
65 |
+
attention_head_dim: int = 88,
|
66 |
+
in_channels: Optional[int] = None,
|
67 |
+
out_channels: Optional[int] = None,
|
68 |
+
num_layers: int = 1,
|
69 |
+
dropout: float = 0.0,
|
70 |
+
norm_num_groups: int = 32,
|
71 |
+
cross_attention_dim: Optional[int] = None,
|
72 |
+
attention_bias: bool = False,
|
73 |
+
sample_size: Optional[int] = None,
|
74 |
+
activation_fn: str = "geglu",
|
75 |
+
norm_elementwise_affine: bool = True,
|
76 |
+
double_self_attention: bool = True,
|
77 |
+
):
|
78 |
+
super().__init__()
|
79 |
+
self.num_attention_heads = num_attention_heads
|
80 |
+
self.attention_head_dim = attention_head_dim
|
81 |
+
inner_dim = num_attention_heads * attention_head_dim
|
82 |
+
|
83 |
+
self.in_channels = in_channels
|
84 |
+
|
85 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
86 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
87 |
+
|
88 |
+
# 3. Define transformers blocks
|
89 |
+
self.transformer_blocks = nn.ModuleList(
|
90 |
+
[
|
91 |
+
BasicTransformerBlock(
|
92 |
+
inner_dim,
|
93 |
+
num_attention_heads,
|
94 |
+
attention_head_dim,
|
95 |
+
dropout=dropout,
|
96 |
+
cross_attention_dim=cross_attention_dim,
|
97 |
+
activation_fn=activation_fn,
|
98 |
+
attention_bias=attention_bias,
|
99 |
+
double_self_attention=double_self_attention,
|
100 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
101 |
+
)
|
102 |
+
for d in range(num_layers)
|
103 |
+
]
|
104 |
+
)
|
105 |
+
|
106 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
107 |
+
|
108 |
+
def forward(
|
109 |
+
self,
|
110 |
+
hidden_states,
|
111 |
+
encoder_hidden_states=None,
|
112 |
+
timestep=None,
|
113 |
+
class_labels=None,
|
114 |
+
num_frames=1,
|
115 |
+
cross_attention_kwargs=None,
|
116 |
+
return_dict: bool = True,
|
117 |
+
attention_mask=None,
|
118 |
+
encoder_attention_mask=None,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
"""
|
122 |
+
The [`TransformerTemporal`] forward method.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
126 |
+
Input hidden_states.
|
127 |
+
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
|
128 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
129 |
+
self-attention.
|
130 |
+
timestep ( `torch.long`, *optional*):
|
131 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
132 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
133 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
134 |
+
`AdaLayerZeroNorm`.
|
135 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
136 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
137 |
+
tuple.
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
[`~models.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`:
|
141 |
+
If `return_dict` is True, an [`~models.transformer_temporal.TransformerTemporalModelOutput`] is
|
142 |
+
returned, otherwise a `tuple` where the first element is the sample tensor.
|
143 |
+
"""
|
144 |
+
# 1. Input
|
145 |
+
batch_frames, channel, height, width = hidden_states.shape
|
146 |
+
batch_size = batch_frames // num_frames
|
147 |
+
if attention_mask is not None:
|
148 |
+
|
149 |
+
if not isinstance(attention_mask, list):
|
150 |
+
# Attn mask - (32, 1, 1024
|
151 |
+
new_attn_mask = attention_mask.clone()
|
152 |
+
# Convert to (2,16,1024)
|
153 |
+
new_attn_mask = new_attn_mask.permute(1,0,2).reshape(-1,num_frames, new_attn_mask.shape[2])
|
154 |
+
# spatial_dim_attn_mask = int(math.sqrt(new_attn_mask.shape[-1]))
|
155 |
+
scaling_factor = int(math.sqrt(new_attn_mask.shape[2] / (height*width)))
|
156 |
+
|
157 |
+
mask_x = int(height * scaling_factor)
|
158 |
+
mask_y = int(width * scaling_factor)
|
159 |
+
|
160 |
+
|
161 |
+
# Scale the attention mask possibly
|
162 |
+
new_attn_mask = new_attn_mask.reshape(-1, num_frames, mask_x, mask_y)[:,:,::scaling_factor, ::scaling_factor]
|
163 |
+
# Convert to (2,16,64)
|
164 |
+
new_attn_mask = new_attn_mask.reshape(-1, num_frames, height*width).permute(0,2,1)
|
165 |
+
# Convert to (128, 1, 16) when hidden states are (128, 16, 1280)
|
166 |
+
new_attn_mask = new_attn_mask.reshape(-1,1,num_frames)
|
167 |
+
|
168 |
+
# Trying to invert this mask, so that background is the only thing active -
|
169 |
+
new_attn_mask = torch.where(new_attn_mask < 0., 0., -10000.).type(new_attn_mask.dtype).to(new_attn_mask.device)
|
170 |
+
else:
|
171 |
+
new_attn_mask_list = []
|
172 |
+
for attn_mask in attention_mask:
|
173 |
+
new_attn_mask = attn_mask.clone()
|
174 |
+
new_attn_mask = new_attn_mask.permute(1,0,2).reshape(-1,num_frames, new_attn_mask.shape[2])
|
175 |
+
scaling_factor = int(math.sqrt(new_attn_mask.shape[2] / (height*width)))
|
176 |
+
|
177 |
+
mask_x = int(height * scaling_factor)
|
178 |
+
mask_y = int(width * scaling_factor)
|
179 |
+
|
180 |
+
|
181 |
+
# Scale the attention mask possibly
|
182 |
+
new_attn_mask = new_attn_mask.reshape(-1, num_frames, mask_x, mask_y)[:,:,::scaling_factor, ::scaling_factor]
|
183 |
+
new_attn_mask = new_attn_mask.reshape(-1, num_frames, height*width).permute(0,2,1)
|
184 |
+
new_attn_mask = new_attn_mask.reshape(-1,1,num_frames)
|
185 |
+
new_attn_mask = torch.where(new_attn_mask < 0., 0., -10000.).type(new_attn_mask.dtype).to(new_attn_mask.device)
|
186 |
+
new_attn_mask_list.append(new_attn_mask)
|
187 |
+
|
188 |
+
new_attn_mask = new_attn_mask_list
|
189 |
+
else:
|
190 |
+
new_attn_mask = None
|
191 |
+
|
192 |
+
residual = hidden_states
|
193 |
+
|
194 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width)
|
195 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4)
|
196 |
+
|
197 |
+
hidden_states = self.norm(hidden_states)
|
198 |
+
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel)
|
199 |
+
|
200 |
+
hidden_states = self.proj_in(hidden_states)
|
201 |
+
|
202 |
+
|
203 |
+
# 2. Blocks
|
204 |
+
for block in self.transformer_blocks:
|
205 |
+
hidden_states = block(
|
206 |
+
hidden_states,
|
207 |
+
encoder_hidden_states=encoder_hidden_states,
|
208 |
+
timestep=timestep,
|
209 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
210 |
+
class_labels=class_labels,
|
211 |
+
attention_mask=new_attn_mask,
|
212 |
+
encoder_attention_mask=encoder_attention_mask,
|
213 |
+
# make_2d_attention_mask=True, # Check this
|
214 |
+
# block_diagonal_attention=True, # TODO - Check this
|
215 |
+
**kwargs,
|
216 |
+
)
|
217 |
+
|
218 |
+
# 3. Output
|
219 |
+
hidden_states = self.proj_out(hidden_states)
|
220 |
+
hidden_states = (
|
221 |
+
hidden_states[None, None, :]
|
222 |
+
.reshape(batch_size, height, width, channel, num_frames)
|
223 |
+
.permute(0, 3, 4, 1, 2)
|
224 |
+
.contiguous()
|
225 |
+
)
|
226 |
+
hidden_states = hidden_states.reshape(batch_frames, channel, height, width)
|
227 |
+
|
228 |
+
output = hidden_states + residual
|
229 |
+
|
230 |
+
if not return_dict:
|
231 |
+
return (output,)
|
232 |
+
|
233 |
+
return TransformerTemporalModelOutput(sample=output)
|
src/models/unet_2d_blocks.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/models/unet_2d_condition.py
ADDED
@@ -0,0 +1,1052 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.utils import BaseOutput, logging
|
24 |
+
from diffusers.models.activations import get_activation
|
25 |
+
from .attention_processor import (
|
26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
CROSS_ATTENTION_PROCESSORS,
|
28 |
+
AttentionProcessor,
|
29 |
+
AttnAddedKVProcessor,
|
30 |
+
AttnProcessor,
|
31 |
+
)
|
32 |
+
from diffusers.models.embeddings import (
|
33 |
+
GaussianFourierProjection,
|
34 |
+
ImageHintTimeEmbedding,
|
35 |
+
ImageProjection,
|
36 |
+
ImageTimeEmbedding,
|
37 |
+
PositionNet,
|
38 |
+
TextImageProjection,
|
39 |
+
TextImageTimeEmbedding,
|
40 |
+
TextTimeEmbedding,
|
41 |
+
TimestepEmbedding,
|
42 |
+
Timesteps,
|
43 |
+
)
|
44 |
+
from diffusers.models.modeling_utils import ModelMixin
|
45 |
+
from .unet_2d_blocks import (
|
46 |
+
UNetMidBlock2DCrossAttn,
|
47 |
+
UNetMidBlock2DSimpleCrossAttn,
|
48 |
+
get_down_block,
|
49 |
+
get_up_block,
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
54 |
+
|
55 |
+
|
56 |
+
@dataclass
|
57 |
+
class UNet2DConditionOutput(BaseOutput):
|
58 |
+
"""
|
59 |
+
The output of [`UNet2DConditionModel`].
|
60 |
+
|
61 |
+
Args:
|
62 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
63 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
64 |
+
"""
|
65 |
+
|
66 |
+
sample: torch.FloatTensor = None
|
67 |
+
|
68 |
+
|
69 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
70 |
+
r"""
|
71 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
72 |
+
shaped output.
|
73 |
+
|
74 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
75 |
+
for all models (such as downloading or saving).
|
76 |
+
|
77 |
+
Parameters:
|
78 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
79 |
+
Height and width of input/output sample.
|
80 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
81 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
82 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
83 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether to flip the sin to cos in the time embedding.
|
85 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
86 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
87 |
+
The tuple of downsample blocks to use.
|
88 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
89 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
90 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
91 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
92 |
+
The tuple of upsample blocks to use.
|
93 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
94 |
+
Whether to include self-attention in the basic transformer blocks, see
|
95 |
+
[`~models.attention.BasicTransformerBlock`].
|
96 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
97 |
+
The tuple of output channels for each block.
|
98 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
99 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
100 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
101 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
102 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
103 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
104 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
105 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
106 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
107 |
+
The dimension of the cross attention features.
|
108 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
109 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
110 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
111 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
112 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
113 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
114 |
+
dimension to `cross_attention_dim`.
|
115 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
116 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
117 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
118 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
119 |
+
num_attention_heads (`int`, *optional*):
|
120 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
121 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
122 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
123 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
124 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
125 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
126 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
127 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
128 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
129 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
130 |
+
Dimension for the timestep embeddings.
|
131 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
132 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
133 |
+
class conditioning with `class_embed_type` equal to `None`.
|
134 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
135 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
136 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
137 |
+
An optional override for the dimension of the projected time embedding.
|
138 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
139 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
140 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
141 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
142 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
143 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
144 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
145 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
146 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
147 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
148 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
149 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
150 |
+
embeddings with the class embeddings.
|
151 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
152 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
153 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
154 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
155 |
+
otherwise.
|
156 |
+
"""
|
157 |
+
|
158 |
+
_supports_gradient_checkpointing = True
|
159 |
+
|
160 |
+
@register_to_config
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
sample_size: Optional[int] = None,
|
164 |
+
in_channels: int = 4,
|
165 |
+
out_channels: int = 4,
|
166 |
+
center_input_sample: bool = False,
|
167 |
+
flip_sin_to_cos: bool = True,
|
168 |
+
freq_shift: int = 0,
|
169 |
+
down_block_types: Tuple[str] = (
|
170 |
+
"CrossAttnDownBlock2D",
|
171 |
+
"CrossAttnDownBlock2D",
|
172 |
+
"CrossAttnDownBlock2D",
|
173 |
+
"DownBlock2D",
|
174 |
+
),
|
175 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
176 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
177 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
178 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
179 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
180 |
+
downsample_padding: int = 1,
|
181 |
+
mid_block_scale_factor: float = 1,
|
182 |
+
dropout: float = 0.0,
|
183 |
+
act_fn: str = "silu",
|
184 |
+
norm_num_groups: Optional[int] = 32,
|
185 |
+
norm_eps: float = 1e-5,
|
186 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
187 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
188 |
+
encoder_hid_dim: Optional[int] = None,
|
189 |
+
encoder_hid_dim_type: Optional[str] = None,
|
190 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
191 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
192 |
+
dual_cross_attention: bool = False,
|
193 |
+
use_linear_projection: bool = False,
|
194 |
+
class_embed_type: Optional[str] = None,
|
195 |
+
addition_embed_type: Optional[str] = None,
|
196 |
+
addition_time_embed_dim: Optional[int] = None,
|
197 |
+
num_class_embeds: Optional[int] = None,
|
198 |
+
upcast_attention: bool = False,
|
199 |
+
resnet_time_scale_shift: str = "default",
|
200 |
+
resnet_skip_time_act: bool = False,
|
201 |
+
resnet_out_scale_factor: int = 1.0,
|
202 |
+
time_embedding_type: str = "positional",
|
203 |
+
time_embedding_dim: Optional[int] = None,
|
204 |
+
time_embedding_act_fn: Optional[str] = None,
|
205 |
+
timestep_post_act: Optional[str] = None,
|
206 |
+
time_cond_proj_dim: Optional[int] = None,
|
207 |
+
conv_in_kernel: int = 3,
|
208 |
+
conv_out_kernel: int = 3,
|
209 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
210 |
+
attention_type: str = "default",
|
211 |
+
class_embeddings_concat: bool = False,
|
212 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
213 |
+
cross_attention_norm: Optional[str] = None,
|
214 |
+
addition_embed_type_num_heads=64,
|
215 |
+
):
|
216 |
+
super().__init__()
|
217 |
+
|
218 |
+
self.sample_size = sample_size
|
219 |
+
|
220 |
+
if num_attention_heads is not None:
|
221 |
+
raise ValueError(
|
222 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
223 |
+
)
|
224 |
+
|
225 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
226 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
227 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
228 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
229 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
230 |
+
# which is why we correct for the naming here.
|
231 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
232 |
+
|
233 |
+
# Check inputs
|
234 |
+
if len(down_block_types) != len(up_block_types):
|
235 |
+
raise ValueError(
|
236 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
237 |
+
)
|
238 |
+
|
239 |
+
if len(block_out_channels) != len(down_block_types):
|
240 |
+
raise ValueError(
|
241 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
242 |
+
)
|
243 |
+
|
244 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
245 |
+
raise ValueError(
|
246 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
247 |
+
)
|
248 |
+
|
249 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
250 |
+
raise ValueError(
|
251 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
252 |
+
)
|
253 |
+
|
254 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
255 |
+
raise ValueError(
|
256 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
257 |
+
)
|
258 |
+
|
259 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
260 |
+
raise ValueError(
|
261 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
262 |
+
)
|
263 |
+
|
264 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
265 |
+
raise ValueError(
|
266 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
267 |
+
)
|
268 |
+
|
269 |
+
# input
|
270 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
271 |
+
self.conv_in = nn.Conv2d(
|
272 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
273 |
+
)
|
274 |
+
|
275 |
+
# time
|
276 |
+
if time_embedding_type == "fourier":
|
277 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
278 |
+
if time_embed_dim % 2 != 0:
|
279 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
280 |
+
self.time_proj = GaussianFourierProjection(
|
281 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
282 |
+
)
|
283 |
+
timestep_input_dim = time_embed_dim
|
284 |
+
elif time_embedding_type == "positional":
|
285 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
286 |
+
|
287 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
288 |
+
timestep_input_dim = block_out_channels[0]
|
289 |
+
else:
|
290 |
+
raise ValueError(
|
291 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
292 |
+
)
|
293 |
+
|
294 |
+
self.time_embedding = TimestepEmbedding(
|
295 |
+
timestep_input_dim,
|
296 |
+
time_embed_dim,
|
297 |
+
act_fn=act_fn,
|
298 |
+
post_act_fn=timestep_post_act,
|
299 |
+
cond_proj_dim=time_cond_proj_dim,
|
300 |
+
)
|
301 |
+
|
302 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
303 |
+
encoder_hid_dim_type = "text_proj"
|
304 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
305 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
306 |
+
|
307 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
308 |
+
raise ValueError(
|
309 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
310 |
+
)
|
311 |
+
|
312 |
+
if encoder_hid_dim_type == "text_proj":
|
313 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
314 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
315 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
316 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
317 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
318 |
+
self.encoder_hid_proj = TextImageProjection(
|
319 |
+
text_embed_dim=encoder_hid_dim,
|
320 |
+
image_embed_dim=cross_attention_dim,
|
321 |
+
cross_attention_dim=cross_attention_dim,
|
322 |
+
)
|
323 |
+
elif encoder_hid_dim_type == "image_proj":
|
324 |
+
# Kandinsky 2.2
|
325 |
+
self.encoder_hid_proj = ImageProjection(
|
326 |
+
image_embed_dim=encoder_hid_dim,
|
327 |
+
cross_attention_dim=cross_attention_dim,
|
328 |
+
)
|
329 |
+
elif encoder_hid_dim_type is not None:
|
330 |
+
raise ValueError(
|
331 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
self.encoder_hid_proj = None
|
335 |
+
|
336 |
+
# class embedding
|
337 |
+
if class_embed_type is None and num_class_embeds is not None:
|
338 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
339 |
+
elif class_embed_type == "timestep":
|
340 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
341 |
+
elif class_embed_type == "identity":
|
342 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
343 |
+
elif class_embed_type == "projection":
|
344 |
+
if projection_class_embeddings_input_dim is None:
|
345 |
+
raise ValueError(
|
346 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
347 |
+
)
|
348 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
349 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
350 |
+
# 2. it projects from an arbitrary input dimension.
|
351 |
+
#
|
352 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
353 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
354 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
355 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
356 |
+
elif class_embed_type == "simple_projection":
|
357 |
+
if projection_class_embeddings_input_dim is None:
|
358 |
+
raise ValueError(
|
359 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
360 |
+
)
|
361 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
362 |
+
else:
|
363 |
+
self.class_embedding = None
|
364 |
+
|
365 |
+
if addition_embed_type == "text":
|
366 |
+
if encoder_hid_dim is not None:
|
367 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
368 |
+
else:
|
369 |
+
text_time_embedding_from_dim = cross_attention_dim
|
370 |
+
|
371 |
+
self.add_embedding = TextTimeEmbedding(
|
372 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
373 |
+
)
|
374 |
+
elif addition_embed_type == "text_image":
|
375 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
376 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
377 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
378 |
+
self.add_embedding = TextImageTimeEmbedding(
|
379 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
380 |
+
)
|
381 |
+
elif addition_embed_type == "text_time":
|
382 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
383 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
384 |
+
elif addition_embed_type == "image":
|
385 |
+
# Kandinsky 2.2
|
386 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
387 |
+
elif addition_embed_type == "image_hint":
|
388 |
+
# Kandinsky 2.2 ControlNet
|
389 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
390 |
+
elif addition_embed_type is not None:
|
391 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
392 |
+
|
393 |
+
if time_embedding_act_fn is None:
|
394 |
+
self.time_embed_act = None
|
395 |
+
else:
|
396 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
397 |
+
|
398 |
+
self.down_blocks = nn.ModuleList([])
|
399 |
+
self.up_blocks = nn.ModuleList([])
|
400 |
+
|
401 |
+
if isinstance(only_cross_attention, bool):
|
402 |
+
if mid_block_only_cross_attention is None:
|
403 |
+
mid_block_only_cross_attention = only_cross_attention
|
404 |
+
|
405 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
406 |
+
|
407 |
+
if mid_block_only_cross_attention is None:
|
408 |
+
mid_block_only_cross_attention = False
|
409 |
+
|
410 |
+
if isinstance(num_attention_heads, int):
|
411 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
412 |
+
|
413 |
+
if isinstance(attention_head_dim, int):
|
414 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
415 |
+
|
416 |
+
if isinstance(cross_attention_dim, int):
|
417 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
418 |
+
|
419 |
+
if isinstance(layers_per_block, int):
|
420 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
421 |
+
|
422 |
+
if isinstance(transformer_layers_per_block, int):
|
423 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
424 |
+
|
425 |
+
if class_embeddings_concat:
|
426 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
427 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
428 |
+
# regular time embeddings
|
429 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
430 |
+
else:
|
431 |
+
blocks_time_embed_dim = time_embed_dim
|
432 |
+
|
433 |
+
# down
|
434 |
+
output_channel = block_out_channels[0]
|
435 |
+
for i, down_block_type in enumerate(down_block_types):
|
436 |
+
input_channel = output_channel
|
437 |
+
output_channel = block_out_channels[i]
|
438 |
+
is_final_block = i == len(block_out_channels) - 1
|
439 |
+
|
440 |
+
down_block = get_down_block(
|
441 |
+
down_block_type,
|
442 |
+
num_layers=layers_per_block[i],
|
443 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
444 |
+
in_channels=input_channel,
|
445 |
+
out_channels=output_channel,
|
446 |
+
temb_channels=blocks_time_embed_dim,
|
447 |
+
add_downsample=not is_final_block,
|
448 |
+
resnet_eps=norm_eps,
|
449 |
+
resnet_act_fn=act_fn,
|
450 |
+
resnet_groups=norm_num_groups,
|
451 |
+
cross_attention_dim=cross_attention_dim[i],
|
452 |
+
num_attention_heads=num_attention_heads[i],
|
453 |
+
downsample_padding=downsample_padding,
|
454 |
+
dual_cross_attention=dual_cross_attention,
|
455 |
+
use_linear_projection=use_linear_projection,
|
456 |
+
only_cross_attention=only_cross_attention[i],
|
457 |
+
upcast_attention=upcast_attention,
|
458 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
459 |
+
attention_type=attention_type,
|
460 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
461 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
462 |
+
cross_attention_norm=cross_attention_norm,
|
463 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
464 |
+
dropout=dropout,
|
465 |
+
)
|
466 |
+
self.down_blocks.append(down_block)
|
467 |
+
|
468 |
+
# mid
|
469 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
470 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
471 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
472 |
+
in_channels=block_out_channels[-1],
|
473 |
+
temb_channels=blocks_time_embed_dim,
|
474 |
+
dropout=dropout,
|
475 |
+
resnet_eps=norm_eps,
|
476 |
+
resnet_act_fn=act_fn,
|
477 |
+
output_scale_factor=mid_block_scale_factor,
|
478 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
479 |
+
cross_attention_dim=cross_attention_dim[-1],
|
480 |
+
num_attention_heads=num_attention_heads[-1],
|
481 |
+
resnet_groups=norm_num_groups,
|
482 |
+
dual_cross_attention=dual_cross_attention,
|
483 |
+
use_linear_projection=use_linear_projection,
|
484 |
+
upcast_attention=upcast_attention,
|
485 |
+
attention_type=attention_type,
|
486 |
+
)
|
487 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
488 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
489 |
+
in_channels=block_out_channels[-1],
|
490 |
+
temb_channels=blocks_time_embed_dim,
|
491 |
+
dropout=dropout,
|
492 |
+
resnet_eps=norm_eps,
|
493 |
+
resnet_act_fn=act_fn,
|
494 |
+
output_scale_factor=mid_block_scale_factor,
|
495 |
+
cross_attention_dim=cross_attention_dim[-1],
|
496 |
+
attention_head_dim=attention_head_dim[-1],
|
497 |
+
resnet_groups=norm_num_groups,
|
498 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
499 |
+
skip_time_act=resnet_skip_time_act,
|
500 |
+
only_cross_attention=mid_block_only_cross_attention,
|
501 |
+
cross_attention_norm=cross_attention_norm,
|
502 |
+
)
|
503 |
+
elif mid_block_type is None:
|
504 |
+
self.mid_block = None
|
505 |
+
else:
|
506 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
507 |
+
|
508 |
+
# count how many layers upsample the images
|
509 |
+
self.num_upsamplers = 0
|
510 |
+
|
511 |
+
# up
|
512 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
513 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
514 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
515 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
516 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
517 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
518 |
+
|
519 |
+
output_channel = reversed_block_out_channels[0]
|
520 |
+
for i, up_block_type in enumerate(up_block_types):
|
521 |
+
is_final_block = i == len(block_out_channels) - 1
|
522 |
+
|
523 |
+
prev_output_channel = output_channel
|
524 |
+
output_channel = reversed_block_out_channels[i]
|
525 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
526 |
+
|
527 |
+
# add upsample block for all BUT final layer
|
528 |
+
if not is_final_block:
|
529 |
+
add_upsample = True
|
530 |
+
self.num_upsamplers += 1
|
531 |
+
else:
|
532 |
+
add_upsample = False
|
533 |
+
|
534 |
+
up_block = get_up_block(
|
535 |
+
up_block_type,
|
536 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
537 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
538 |
+
in_channels=input_channel,
|
539 |
+
out_channels=output_channel,
|
540 |
+
prev_output_channel=prev_output_channel,
|
541 |
+
temb_channels=blocks_time_embed_dim,
|
542 |
+
add_upsample=add_upsample,
|
543 |
+
resnet_eps=norm_eps,
|
544 |
+
resnet_act_fn=act_fn,
|
545 |
+
resnet_groups=norm_num_groups,
|
546 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
547 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
548 |
+
dual_cross_attention=dual_cross_attention,
|
549 |
+
use_linear_projection=use_linear_projection,
|
550 |
+
only_cross_attention=only_cross_attention[i],
|
551 |
+
upcast_attention=upcast_attention,
|
552 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
553 |
+
attention_type=attention_type,
|
554 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
555 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
556 |
+
cross_attention_norm=cross_attention_norm,
|
557 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
558 |
+
dropout=dropout,
|
559 |
+
)
|
560 |
+
self.up_blocks.append(up_block)
|
561 |
+
prev_output_channel = output_channel
|
562 |
+
|
563 |
+
# out
|
564 |
+
if norm_num_groups is not None:
|
565 |
+
self.conv_norm_out = nn.GroupNorm(
|
566 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
567 |
+
)
|
568 |
+
|
569 |
+
self.conv_act = get_activation(act_fn)
|
570 |
+
|
571 |
+
else:
|
572 |
+
self.conv_norm_out = None
|
573 |
+
self.conv_act = None
|
574 |
+
|
575 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
576 |
+
self.conv_out = nn.Conv2d(
|
577 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
578 |
+
)
|
579 |
+
|
580 |
+
if attention_type in ["gated", "gated-text-image"]:
|
581 |
+
positive_len = 768
|
582 |
+
if isinstance(cross_attention_dim, int):
|
583 |
+
positive_len = cross_attention_dim
|
584 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(cross_attention_dim, list):
|
585 |
+
positive_len = cross_attention_dim[0]
|
586 |
+
|
587 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
588 |
+
self.position_net = PositionNet(
|
589 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
590 |
+
)
|
591 |
+
|
592 |
+
@property
|
593 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
594 |
+
r"""
|
595 |
+
Returns:
|
596 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
597 |
+
indexed by its weight name.
|
598 |
+
"""
|
599 |
+
# set recursively
|
600 |
+
processors = {}
|
601 |
+
|
602 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
603 |
+
if hasattr(module, "get_processor"):
|
604 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
605 |
+
|
606 |
+
for sub_name, child in module.named_children():
|
607 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
608 |
+
|
609 |
+
return processors
|
610 |
+
|
611 |
+
for name, module in self.named_children():
|
612 |
+
fn_recursive_add_processors(name, module, processors)
|
613 |
+
|
614 |
+
return processors
|
615 |
+
|
616 |
+
def set_attn_processor(
|
617 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
618 |
+
):
|
619 |
+
r"""
|
620 |
+
Sets the attention processor to use to compute attention.
|
621 |
+
|
622 |
+
Parameters:
|
623 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
624 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
625 |
+
for **all** `Attention` layers.
|
626 |
+
|
627 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
628 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
629 |
+
|
630 |
+
"""
|
631 |
+
count = len(self.attn_processors.keys())
|
632 |
+
|
633 |
+
if isinstance(processor, dict) and len(processor) != count:
|
634 |
+
raise ValueError(
|
635 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
636 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
637 |
+
)
|
638 |
+
|
639 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
640 |
+
if hasattr(module, "set_processor"):
|
641 |
+
if not isinstance(processor, dict):
|
642 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
643 |
+
else:
|
644 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
645 |
+
|
646 |
+
for sub_name, child in module.named_children():
|
647 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
648 |
+
|
649 |
+
for name, module in self.named_children():
|
650 |
+
fn_recursive_attn_processor(name, module, processor)
|
651 |
+
|
652 |
+
def set_default_attn_processor(self):
|
653 |
+
"""
|
654 |
+
Disables custom attention processors and sets the default attention implementation.
|
655 |
+
"""
|
656 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
657 |
+
processor = AttnAddedKVProcessor()
|
658 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
659 |
+
processor = AttnProcessor()
|
660 |
+
else:
|
661 |
+
raise ValueError(
|
662 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
663 |
+
)
|
664 |
+
|
665 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
666 |
+
|
667 |
+
def set_attention_slice(self, slice_size):
|
668 |
+
r"""
|
669 |
+
Enable sliced attention computation.
|
670 |
+
|
671 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
672 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
673 |
+
|
674 |
+
Args:
|
675 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
676 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
677 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
678 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
679 |
+
must be a multiple of `slice_size`.
|
680 |
+
"""
|
681 |
+
sliceable_head_dims = []
|
682 |
+
|
683 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
684 |
+
if hasattr(module, "set_attention_slice"):
|
685 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
686 |
+
|
687 |
+
for child in module.children():
|
688 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
689 |
+
|
690 |
+
# retrieve number of attention layers
|
691 |
+
for module in self.children():
|
692 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
693 |
+
|
694 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
695 |
+
|
696 |
+
if slice_size == "auto":
|
697 |
+
# half the attention head size is usually a good trade-off between
|
698 |
+
# speed and memory
|
699 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
700 |
+
elif slice_size == "max":
|
701 |
+
# make smallest slice possible
|
702 |
+
slice_size = num_sliceable_layers * [1]
|
703 |
+
|
704 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
705 |
+
|
706 |
+
if len(slice_size) != len(sliceable_head_dims):
|
707 |
+
raise ValueError(
|
708 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
709 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
710 |
+
)
|
711 |
+
|
712 |
+
for i in range(len(slice_size)):
|
713 |
+
size = slice_size[i]
|
714 |
+
dim = sliceable_head_dims[i]
|
715 |
+
if size is not None and size > dim:
|
716 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
717 |
+
|
718 |
+
# Recursively walk through all the children.
|
719 |
+
# Any children which exposes the set_attention_slice method
|
720 |
+
# gets the message
|
721 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
722 |
+
if hasattr(module, "set_attention_slice"):
|
723 |
+
module.set_attention_slice(slice_size.pop())
|
724 |
+
|
725 |
+
for child in module.children():
|
726 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
727 |
+
|
728 |
+
reversed_slice_size = list(reversed(slice_size))
|
729 |
+
for module in self.children():
|
730 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
731 |
+
|
732 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
733 |
+
if hasattr(module, "gradient_checkpointing"):
|
734 |
+
module.gradient_checkpointing = value
|
735 |
+
|
736 |
+
def forward(
|
737 |
+
self,
|
738 |
+
sample: torch.FloatTensor,
|
739 |
+
timestep: Union[torch.Tensor, float, int],
|
740 |
+
encoder_hidden_states: torch.Tensor,
|
741 |
+
class_labels: Optional[torch.Tensor] = None,
|
742 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
743 |
+
attention_mask: Optional[torch.Tensor] = None,
|
744 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
745 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
746 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
747 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
748 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
749 |
+
return_dict: bool = True,
|
750 |
+
**kwargs,
|
751 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
752 |
+
r"""
|
753 |
+
The [`UNet2DConditionModel`] forward method.
|
754 |
+
|
755 |
+
Args:
|
756 |
+
sample (`torch.FloatTensor`):
|
757 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
758 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
759 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
760 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
761 |
+
encoder_attention_mask (`torch.Tensor`):
|
762 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
763 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
764 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
765 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
766 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
767 |
+
tuple.
|
768 |
+
cross_attention_kwargs (`dict`, *optional*):
|
769 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
770 |
+
added_cond_kwargs: (`dict`, *optional*):
|
771 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
772 |
+
are passed along to the UNet blocks.
|
773 |
+
|
774 |
+
Returns:
|
775 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
776 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
777 |
+
a `tuple` is returned where the first element is the sample tensor.
|
778 |
+
"""
|
779 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
780 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
781 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
782 |
+
# on the fly if necessary.
|
783 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
784 |
+
|
785 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
786 |
+
forward_upsample_size = False
|
787 |
+
upsample_size = None
|
788 |
+
|
789 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
790 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
791 |
+
forward_upsample_size = True
|
792 |
+
|
793 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
794 |
+
# expects mask of shape:
|
795 |
+
# [batch, key_tokens]
|
796 |
+
# adds singleton query_tokens dimension:
|
797 |
+
# [batch, 1, key_tokens]
|
798 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
799 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
800 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
801 |
+
if attention_mask is not None:
|
802 |
+
# assume that mask is expressed as:
|
803 |
+
# (1 = keep, 0 = discard)
|
804 |
+
# convert mask into a bias that can be added to attention scores:
|
805 |
+
# (keep = +0, discard = -10000.0)
|
806 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
807 |
+
attention_mask = attention_mask.unsqueeze(1)
|
808 |
+
|
809 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
810 |
+
if encoder_attention_mask is not None:
|
811 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
812 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
813 |
+
|
814 |
+
# 0. center input if necessary
|
815 |
+
if self.config.center_input_sample:
|
816 |
+
sample = 2 * sample - 1.0
|
817 |
+
|
818 |
+
# 1. time
|
819 |
+
timesteps = timestep
|
820 |
+
if not torch.is_tensor(timesteps):
|
821 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
822 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
823 |
+
is_mps = sample.device.type == "mps"
|
824 |
+
if isinstance(timestep, float):
|
825 |
+
dtype = torch.float32 if is_mps else torch.float64
|
826 |
+
else:
|
827 |
+
dtype = torch.int32 if is_mps else torch.int64
|
828 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
829 |
+
elif len(timesteps.shape) == 0:
|
830 |
+
timesteps = timesteps[None].to(sample.device)
|
831 |
+
|
832 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
833 |
+
timesteps = timesteps.expand(sample.shape[0])
|
834 |
+
|
835 |
+
t_emb = self.time_proj(timesteps)
|
836 |
+
|
837 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
838 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
839 |
+
# there might be better ways to encapsulate this.
|
840 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
841 |
+
|
842 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
843 |
+
aug_emb = None
|
844 |
+
|
845 |
+
if self.class_embedding is not None:
|
846 |
+
if class_labels is None:
|
847 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
848 |
+
|
849 |
+
if self.config.class_embed_type == "timestep":
|
850 |
+
class_labels = self.time_proj(class_labels)
|
851 |
+
|
852 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
853 |
+
# there might be better ways to encapsulate this.
|
854 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
855 |
+
|
856 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
857 |
+
|
858 |
+
if self.config.class_embeddings_concat:
|
859 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
860 |
+
else:
|
861 |
+
emb = emb + class_emb
|
862 |
+
|
863 |
+
if self.config.addition_embed_type == "text":
|
864 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
865 |
+
elif self.config.addition_embed_type == "text_image":
|
866 |
+
# Kandinsky 2.1 - style
|
867 |
+
if "image_embeds" not in added_cond_kwargs:
|
868 |
+
raise ValueError(
|
869 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
870 |
+
)
|
871 |
+
|
872 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
873 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
874 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
875 |
+
elif self.config.addition_embed_type == "text_time":
|
876 |
+
# SDXL - style
|
877 |
+
if "text_embeds" not in added_cond_kwargs:
|
878 |
+
raise ValueError(
|
879 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
880 |
+
)
|
881 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
882 |
+
if "time_ids" not in added_cond_kwargs:
|
883 |
+
raise ValueError(
|
884 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
885 |
+
)
|
886 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
887 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
888 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
889 |
+
|
890 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
891 |
+
add_embeds = add_embeds.to(emb.dtype)
|
892 |
+
aug_emb = self.add_embedding(add_embeds)
|
893 |
+
elif self.config.addition_embed_type == "image":
|
894 |
+
# Kandinsky 2.2 - style
|
895 |
+
if "image_embeds" not in added_cond_kwargs:
|
896 |
+
raise ValueError(
|
897 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
898 |
+
)
|
899 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
900 |
+
aug_emb = self.add_embedding(image_embs)
|
901 |
+
elif self.config.addition_embed_type == "image_hint":
|
902 |
+
# Kandinsky 2.2 - style
|
903 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
904 |
+
raise ValueError(
|
905 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
906 |
+
)
|
907 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
908 |
+
hint = added_cond_kwargs.get("hint")
|
909 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
910 |
+
sample = torch.cat([sample, hint], dim=1)
|
911 |
+
|
912 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
913 |
+
|
914 |
+
if self.time_embed_act is not None:
|
915 |
+
emb = self.time_embed_act(emb)
|
916 |
+
|
917 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
918 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
919 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
920 |
+
# Kadinsky 2.1 - style
|
921 |
+
if "image_embeds" not in added_cond_kwargs:
|
922 |
+
raise ValueError(
|
923 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
924 |
+
)
|
925 |
+
|
926 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
927 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
928 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
929 |
+
# Kandinsky 2.2 - style
|
930 |
+
if "image_embeds" not in added_cond_kwargs:
|
931 |
+
raise ValueError(
|
932 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
933 |
+
)
|
934 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
935 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
936 |
+
# 2. pre-process
|
937 |
+
sample = self.conv_in(sample)
|
938 |
+
|
939 |
+
# 2.5 GLIGEN position net
|
940 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
941 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
942 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
943 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
944 |
+
|
945 |
+
# 3. down
|
946 |
+
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
|
947 |
+
|
948 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
949 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
950 |
+
|
951 |
+
down_block_res_samples = (sample,)
|
952 |
+
for downsample_block in self.down_blocks:
|
953 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
954 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
955 |
+
additional_residuals = {}
|
956 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
957 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
958 |
+
|
959 |
+
sample, res_samples = downsample_block(
|
960 |
+
hidden_states=sample,
|
961 |
+
temb=emb,
|
962 |
+
encoder_hidden_states=encoder_hidden_states,
|
963 |
+
attention_mask=attention_mask,
|
964 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
965 |
+
encoder_attention_mask=encoder_attention_mask,
|
966 |
+
**additional_residuals,
|
967 |
+
**kwargs,
|
968 |
+
)
|
969 |
+
else:
|
970 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, scale=lora_scale)
|
971 |
+
|
972 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
973 |
+
sample += down_block_additional_residuals.pop(0)
|
974 |
+
|
975 |
+
down_block_res_samples += res_samples
|
976 |
+
|
977 |
+
if is_controlnet:
|
978 |
+
new_down_block_res_samples = ()
|
979 |
+
|
980 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
981 |
+
down_block_res_samples, down_block_additional_residuals
|
982 |
+
):
|
983 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
984 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
985 |
+
|
986 |
+
down_block_res_samples = new_down_block_res_samples
|
987 |
+
|
988 |
+
# 4. mid
|
989 |
+
if self.mid_block is not None:
|
990 |
+
sample = self.mid_block(
|
991 |
+
sample,
|
992 |
+
emb,
|
993 |
+
encoder_hidden_states=encoder_hidden_states,
|
994 |
+
attention_mask=attention_mask,
|
995 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
996 |
+
encoder_attention_mask=encoder_attention_mask,
|
997 |
+
**kwargs,
|
998 |
+
)
|
999 |
+
# To support T2I-Adapter-XL
|
1000 |
+
if (
|
1001 |
+
is_adapter
|
1002 |
+
and len(down_block_additional_residuals) > 0
|
1003 |
+
and sample.shape == down_block_additional_residuals[0].shape
|
1004 |
+
):
|
1005 |
+
sample += down_block_additional_residuals.pop(0)
|
1006 |
+
|
1007 |
+
if is_controlnet:
|
1008 |
+
sample = sample + mid_block_additional_residual
|
1009 |
+
|
1010 |
+
# 5. up
|
1011 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1012 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1013 |
+
|
1014 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1015 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1016 |
+
|
1017 |
+
# if we have not reached the final block and need to forward the
|
1018 |
+
# upsample size, we do it here
|
1019 |
+
if not is_final_block and forward_upsample_size:
|
1020 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1021 |
+
|
1022 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1023 |
+
sample = upsample_block(
|
1024 |
+
hidden_states=sample,
|
1025 |
+
temb=emb,
|
1026 |
+
res_hidden_states_tuple=res_samples,
|
1027 |
+
encoder_hidden_states=encoder_hidden_states,
|
1028 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1029 |
+
upsample_size=upsample_size,
|
1030 |
+
attention_mask=attention_mask,
|
1031 |
+
encoder_attention_mask=encoder_attention_mask,
|
1032 |
+
**kwargs,
|
1033 |
+
)
|
1034 |
+
else:
|
1035 |
+
sample = upsample_block(
|
1036 |
+
hidden_states=sample,
|
1037 |
+
temb=emb,
|
1038 |
+
res_hidden_states_tuple=res_samples,
|
1039 |
+
upsample_size=upsample_size,
|
1040 |
+
scale=lora_scale,
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
# 6. post-process
|
1044 |
+
if self.conv_norm_out:
|
1045 |
+
sample = self.conv_norm_out(sample)
|
1046 |
+
sample = self.conv_act(sample)
|
1047 |
+
sample = self.conv_out(sample)
|
1048 |
+
|
1049 |
+
if not return_dict:
|
1050 |
+
return (sample,)
|
1051 |
+
|
1052 |
+
return UNet2DConditionOutput(sample=sample)
|
src/models/unet_3d_blocks.py
ADDED
@@ -0,0 +1,698 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import math
|
17 |
+
from torch import nn
|
18 |
+
|
19 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, TemporalConvLayer, Upsample2D
|
20 |
+
from .transformer_2d import Transformer2DModel
|
21 |
+
from .transformer_temporal import TransformerTemporalModel
|
22 |
+
|
23 |
+
|
24 |
+
def get_down_block(
|
25 |
+
down_block_type,
|
26 |
+
num_layers,
|
27 |
+
in_channels,
|
28 |
+
out_channels,
|
29 |
+
temb_channels,
|
30 |
+
add_downsample,
|
31 |
+
resnet_eps,
|
32 |
+
resnet_act_fn,
|
33 |
+
num_attention_heads,
|
34 |
+
resnet_groups=None,
|
35 |
+
cross_attention_dim=None,
|
36 |
+
downsample_padding=None,
|
37 |
+
dual_cross_attention=False,
|
38 |
+
use_linear_projection=True,
|
39 |
+
only_cross_attention=False,
|
40 |
+
upcast_attention=False,
|
41 |
+
resnet_time_scale_shift="default",
|
42 |
+
):
|
43 |
+
if down_block_type == "DownBlock3D":
|
44 |
+
return DownBlock3D(
|
45 |
+
num_layers=num_layers,
|
46 |
+
in_channels=in_channels,
|
47 |
+
out_channels=out_channels,
|
48 |
+
temb_channels=temb_channels,
|
49 |
+
add_downsample=add_downsample,
|
50 |
+
resnet_eps=resnet_eps,
|
51 |
+
resnet_act_fn=resnet_act_fn,
|
52 |
+
resnet_groups=resnet_groups,
|
53 |
+
downsample_padding=downsample_padding,
|
54 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
55 |
+
)
|
56 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
57 |
+
if cross_attention_dim is None:
|
58 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
59 |
+
return CrossAttnDownBlock3D(
|
60 |
+
num_layers=num_layers,
|
61 |
+
in_channels=in_channels,
|
62 |
+
out_channels=out_channels,
|
63 |
+
temb_channels=temb_channels,
|
64 |
+
add_downsample=add_downsample,
|
65 |
+
resnet_eps=resnet_eps,
|
66 |
+
resnet_act_fn=resnet_act_fn,
|
67 |
+
resnet_groups=resnet_groups,
|
68 |
+
downsample_padding=downsample_padding,
|
69 |
+
cross_attention_dim=cross_attention_dim,
|
70 |
+
num_attention_heads=num_attention_heads,
|
71 |
+
dual_cross_attention=dual_cross_attention,
|
72 |
+
use_linear_projection=use_linear_projection,
|
73 |
+
only_cross_attention=only_cross_attention,
|
74 |
+
upcast_attention=upcast_attention,
|
75 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
76 |
+
)
|
77 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
78 |
+
|
79 |
+
|
80 |
+
def get_up_block(
|
81 |
+
up_block_type,
|
82 |
+
num_layers,
|
83 |
+
in_channels,
|
84 |
+
out_channels,
|
85 |
+
prev_output_channel,
|
86 |
+
temb_channels,
|
87 |
+
add_upsample,
|
88 |
+
resnet_eps,
|
89 |
+
resnet_act_fn,
|
90 |
+
num_attention_heads,
|
91 |
+
resnet_groups=None,
|
92 |
+
cross_attention_dim=None,
|
93 |
+
dual_cross_attention=False,
|
94 |
+
use_linear_projection=True,
|
95 |
+
only_cross_attention=False,
|
96 |
+
upcast_attention=False,
|
97 |
+
resnet_time_scale_shift="default",
|
98 |
+
):
|
99 |
+
if up_block_type == "UpBlock3D":
|
100 |
+
return UpBlock3D(
|
101 |
+
num_layers=num_layers,
|
102 |
+
in_channels=in_channels,
|
103 |
+
out_channels=out_channels,
|
104 |
+
prev_output_channel=prev_output_channel,
|
105 |
+
temb_channels=temb_channels,
|
106 |
+
add_upsample=add_upsample,
|
107 |
+
resnet_eps=resnet_eps,
|
108 |
+
resnet_act_fn=resnet_act_fn,
|
109 |
+
resnet_groups=resnet_groups,
|
110 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
111 |
+
)
|
112 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
113 |
+
if cross_attention_dim is None:
|
114 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
115 |
+
return CrossAttnUpBlock3D(
|
116 |
+
num_layers=num_layers,
|
117 |
+
in_channels=in_channels,
|
118 |
+
out_channels=out_channels,
|
119 |
+
prev_output_channel=prev_output_channel,
|
120 |
+
temb_channels=temb_channels,
|
121 |
+
add_upsample=add_upsample,
|
122 |
+
resnet_eps=resnet_eps,
|
123 |
+
resnet_act_fn=resnet_act_fn,
|
124 |
+
resnet_groups=resnet_groups,
|
125 |
+
cross_attention_dim=cross_attention_dim,
|
126 |
+
num_attention_heads=num_attention_heads,
|
127 |
+
dual_cross_attention=dual_cross_attention,
|
128 |
+
use_linear_projection=use_linear_projection,
|
129 |
+
only_cross_attention=only_cross_attention,
|
130 |
+
upcast_attention=upcast_attention,
|
131 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
132 |
+
)
|
133 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
134 |
+
|
135 |
+
|
136 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
137 |
+
def __init__(
|
138 |
+
self,
|
139 |
+
in_channels: int,
|
140 |
+
temb_channels: int,
|
141 |
+
dropout: float = 0.0,
|
142 |
+
num_layers: int = 1,
|
143 |
+
resnet_eps: float = 1e-6,
|
144 |
+
resnet_time_scale_shift: str = "default",
|
145 |
+
resnet_act_fn: str = "swish",
|
146 |
+
resnet_groups: int = 32,
|
147 |
+
resnet_pre_norm: bool = True,
|
148 |
+
num_attention_heads=1,
|
149 |
+
output_scale_factor=1.0,
|
150 |
+
cross_attention_dim=1280,
|
151 |
+
dual_cross_attention=False,
|
152 |
+
use_linear_projection=True,
|
153 |
+
upcast_attention=False,
|
154 |
+
):
|
155 |
+
super().__init__()
|
156 |
+
|
157 |
+
self.has_cross_attention = True
|
158 |
+
self.num_attention_heads = num_attention_heads
|
159 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
160 |
+
|
161 |
+
# there is always at least one resnet
|
162 |
+
resnets = [
|
163 |
+
ResnetBlock2D(
|
164 |
+
in_channels=in_channels,
|
165 |
+
out_channels=in_channels,
|
166 |
+
temb_channels=temb_channels,
|
167 |
+
eps=resnet_eps,
|
168 |
+
groups=resnet_groups,
|
169 |
+
dropout=dropout,
|
170 |
+
time_embedding_norm=resnet_time_scale_shift,
|
171 |
+
non_linearity=resnet_act_fn,
|
172 |
+
output_scale_factor=output_scale_factor,
|
173 |
+
pre_norm=resnet_pre_norm,
|
174 |
+
)
|
175 |
+
]
|
176 |
+
temp_convs = [
|
177 |
+
TemporalConvLayer(
|
178 |
+
in_channels,
|
179 |
+
in_channels,
|
180 |
+
dropout=0.1,
|
181 |
+
)
|
182 |
+
]
|
183 |
+
attentions = []
|
184 |
+
temp_attentions = []
|
185 |
+
|
186 |
+
for _ in range(num_layers):
|
187 |
+
attentions.append(
|
188 |
+
Transformer2DModel(
|
189 |
+
in_channels // num_attention_heads,
|
190 |
+
num_attention_heads,
|
191 |
+
in_channels=in_channels,
|
192 |
+
num_layers=1,
|
193 |
+
cross_attention_dim=cross_attention_dim,
|
194 |
+
norm_num_groups=resnet_groups,
|
195 |
+
use_linear_projection=use_linear_projection,
|
196 |
+
upcast_attention=upcast_attention,
|
197 |
+
)
|
198 |
+
)
|
199 |
+
temp_attentions.append(
|
200 |
+
TransformerTemporalModel(
|
201 |
+
in_channels // num_attention_heads,
|
202 |
+
num_attention_heads,
|
203 |
+
in_channels=in_channels,
|
204 |
+
num_layers=1,
|
205 |
+
cross_attention_dim=cross_attention_dim,
|
206 |
+
norm_num_groups=resnet_groups,
|
207 |
+
)
|
208 |
+
)
|
209 |
+
resnets.append(
|
210 |
+
ResnetBlock2D(
|
211 |
+
in_channels=in_channels,
|
212 |
+
out_channels=in_channels,
|
213 |
+
temb_channels=temb_channels,
|
214 |
+
eps=resnet_eps,
|
215 |
+
groups=resnet_groups,
|
216 |
+
dropout=dropout,
|
217 |
+
time_embedding_norm=resnet_time_scale_shift,
|
218 |
+
non_linearity=resnet_act_fn,
|
219 |
+
output_scale_factor=output_scale_factor,
|
220 |
+
pre_norm=resnet_pre_norm,
|
221 |
+
)
|
222 |
+
)
|
223 |
+
temp_convs.append(
|
224 |
+
TemporalConvLayer(
|
225 |
+
in_channels,
|
226 |
+
in_channels,
|
227 |
+
dropout=0.1,
|
228 |
+
)
|
229 |
+
)
|
230 |
+
|
231 |
+
self.resnets = nn.ModuleList(resnets)
|
232 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
233 |
+
self.attentions = nn.ModuleList(attentions)
|
234 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
235 |
+
|
236 |
+
def forward(
|
237 |
+
self,
|
238 |
+
hidden_states,
|
239 |
+
temb=None,
|
240 |
+
encoder_hidden_states=None,
|
241 |
+
encoder_attention_mask=None,
|
242 |
+
attention_mask=None,
|
243 |
+
num_frames=1,
|
244 |
+
cross_attention_kwargs=None,
|
245 |
+
**kwargs,
|
246 |
+
|
247 |
+
):
|
248 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
249 |
+
hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames)
|
250 |
+
for attn, temp_attn, resnet, temp_conv in zip(
|
251 |
+
self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:]
|
252 |
+
):
|
253 |
+
hidden_states = attn(
|
254 |
+
hidden_states,
|
255 |
+
encoder_hidden_states=encoder_hidden_states,
|
256 |
+
encoder_attention_mask=encoder_attention_mask,
|
257 |
+
attention_mask=attention_mask,
|
258 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
259 |
+
return_dict=False,
|
260 |
+
**kwargs,
|
261 |
+
|
262 |
+
)[0]
|
263 |
+
hidden_states = temp_attn(
|
264 |
+
hidden_states, num_frames=num_frames, attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, **kwargs
|
265 |
+
)[0]
|
266 |
+
hidden_states = resnet(hidden_states, temb)
|
267 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
268 |
+
|
269 |
+
return hidden_states
|
270 |
+
|
271 |
+
|
272 |
+
class CrossAttnDownBlock3D(nn.Module):
|
273 |
+
def __init__(
|
274 |
+
self,
|
275 |
+
in_channels: int,
|
276 |
+
out_channels: int,
|
277 |
+
temb_channels: int,
|
278 |
+
dropout: float = 0.0,
|
279 |
+
num_layers: int = 1,
|
280 |
+
resnet_eps: float = 1e-6,
|
281 |
+
resnet_time_scale_shift: str = "default",
|
282 |
+
resnet_act_fn: str = "swish",
|
283 |
+
resnet_groups: int = 32,
|
284 |
+
resnet_pre_norm: bool = True,
|
285 |
+
num_attention_heads=1,
|
286 |
+
cross_attention_dim=1280,
|
287 |
+
output_scale_factor=1.0,
|
288 |
+
downsample_padding=1,
|
289 |
+
add_downsample=True,
|
290 |
+
dual_cross_attention=False,
|
291 |
+
use_linear_projection=False,
|
292 |
+
only_cross_attention=False,
|
293 |
+
upcast_attention=False,
|
294 |
+
):
|
295 |
+
super().__init__()
|
296 |
+
resnets = []
|
297 |
+
attentions = []
|
298 |
+
temp_attentions = []
|
299 |
+
temp_convs = []
|
300 |
+
|
301 |
+
self.has_cross_attention = True
|
302 |
+
self.num_attention_heads = num_attention_heads
|
303 |
+
|
304 |
+
for i in range(num_layers):
|
305 |
+
in_channels = in_channels if i == 0 else out_channels
|
306 |
+
resnets.append(
|
307 |
+
ResnetBlock2D(
|
308 |
+
in_channels=in_channels,
|
309 |
+
out_channels=out_channels,
|
310 |
+
temb_channels=temb_channels,
|
311 |
+
eps=resnet_eps,
|
312 |
+
groups=resnet_groups,
|
313 |
+
dropout=dropout,
|
314 |
+
time_embedding_norm=resnet_time_scale_shift,
|
315 |
+
non_linearity=resnet_act_fn,
|
316 |
+
output_scale_factor=output_scale_factor,
|
317 |
+
pre_norm=resnet_pre_norm,
|
318 |
+
)
|
319 |
+
)
|
320 |
+
temp_convs.append(
|
321 |
+
TemporalConvLayer(
|
322 |
+
out_channels,
|
323 |
+
out_channels,
|
324 |
+
dropout=0.1,
|
325 |
+
)
|
326 |
+
)
|
327 |
+
attentions.append(
|
328 |
+
Transformer2DModel(
|
329 |
+
out_channels // num_attention_heads,
|
330 |
+
num_attention_heads,
|
331 |
+
in_channels=out_channels,
|
332 |
+
num_layers=1,
|
333 |
+
cross_attention_dim=cross_attention_dim,
|
334 |
+
norm_num_groups=resnet_groups,
|
335 |
+
use_linear_projection=use_linear_projection,
|
336 |
+
only_cross_attention=only_cross_attention,
|
337 |
+
upcast_attention=upcast_attention,
|
338 |
+
)
|
339 |
+
)
|
340 |
+
temp_attentions.append(
|
341 |
+
TransformerTemporalModel(
|
342 |
+
out_channels // num_attention_heads,
|
343 |
+
num_attention_heads,
|
344 |
+
in_channels=out_channels,
|
345 |
+
num_layers=1,
|
346 |
+
cross_attention_dim=cross_attention_dim,
|
347 |
+
norm_num_groups=resnet_groups,
|
348 |
+
)
|
349 |
+
)
|
350 |
+
self.resnets = nn.ModuleList(resnets)
|
351 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
352 |
+
self.attentions = nn.ModuleList(attentions)
|
353 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
354 |
+
|
355 |
+
if add_downsample:
|
356 |
+
self.downsamplers = nn.ModuleList(
|
357 |
+
[
|
358 |
+
Downsample2D(
|
359 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
360 |
+
)
|
361 |
+
]
|
362 |
+
)
|
363 |
+
else:
|
364 |
+
self.downsamplers = None
|
365 |
+
|
366 |
+
self.gradient_checkpointing = False
|
367 |
+
|
368 |
+
def forward(
|
369 |
+
self,
|
370 |
+
hidden_states,
|
371 |
+
temb=None,
|
372 |
+
encoder_hidden_states=None,
|
373 |
+
encoder_attention_mask=None,
|
374 |
+
attention_mask=None,
|
375 |
+
num_frames=1,
|
376 |
+
cross_attention_kwargs=None,
|
377 |
+
**kwargs,
|
378 |
+
|
379 |
+
):
|
380 |
+
# TODO(Patrick, William) - attention mask is not used
|
381 |
+
output_states = ()
|
382 |
+
for resnet, temp_conv, attn, temp_attn in zip(
|
383 |
+
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
384 |
+
):
|
385 |
+
hidden_states = resnet(hidden_states, temb)
|
386 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
387 |
+
hidden_states = attn(
|
388 |
+
hidden_states,
|
389 |
+
attention_mask=attention_mask,
|
390 |
+
encoder_hidden_states=encoder_hidden_states,
|
391 |
+
encoder_attention_mask=encoder_attention_mask,
|
392 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
393 |
+
return_dict=False,
|
394 |
+
**kwargs,
|
395 |
+
|
396 |
+
)[0]
|
397 |
+
hidden_states = temp_attn(
|
398 |
+
hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, **kwargs
|
399 |
+
)[0]
|
400 |
+
|
401 |
+
output_states += (hidden_states,)
|
402 |
+
|
403 |
+
if self.downsamplers is not None:
|
404 |
+
for downsampler in self.downsamplers:
|
405 |
+
hidden_states = downsampler(hidden_states)
|
406 |
+
|
407 |
+
output_states += (hidden_states,)
|
408 |
+
|
409 |
+
return hidden_states, output_states
|
410 |
+
|
411 |
+
|
412 |
+
class DownBlock3D(nn.Module):
|
413 |
+
def __init__(
|
414 |
+
self,
|
415 |
+
in_channels: int,
|
416 |
+
out_channels: int,
|
417 |
+
temb_channels: int,
|
418 |
+
dropout: float = 0.0,
|
419 |
+
num_layers: int = 1,
|
420 |
+
resnet_eps: float = 1e-6,
|
421 |
+
resnet_time_scale_shift: str = "default",
|
422 |
+
resnet_act_fn: str = "swish",
|
423 |
+
resnet_groups: int = 32,
|
424 |
+
resnet_pre_norm: bool = True,
|
425 |
+
output_scale_factor=1.0,
|
426 |
+
add_downsample=True,
|
427 |
+
downsample_padding=1,
|
428 |
+
):
|
429 |
+
super().__init__()
|
430 |
+
resnets = []
|
431 |
+
temp_convs = []
|
432 |
+
|
433 |
+
for i in range(num_layers):
|
434 |
+
in_channels = in_channels if i == 0 else out_channels
|
435 |
+
resnets.append(
|
436 |
+
ResnetBlock2D(
|
437 |
+
in_channels=in_channels,
|
438 |
+
out_channels=out_channels,
|
439 |
+
temb_channels=temb_channels,
|
440 |
+
eps=resnet_eps,
|
441 |
+
groups=resnet_groups,
|
442 |
+
dropout=dropout,
|
443 |
+
time_embedding_norm=resnet_time_scale_shift,
|
444 |
+
non_linearity=resnet_act_fn,
|
445 |
+
output_scale_factor=output_scale_factor,
|
446 |
+
pre_norm=resnet_pre_norm,
|
447 |
+
)
|
448 |
+
)
|
449 |
+
temp_convs.append(
|
450 |
+
TemporalConvLayer(
|
451 |
+
out_channels,
|
452 |
+
out_channels,
|
453 |
+
dropout=0.1,
|
454 |
+
)
|
455 |
+
)
|
456 |
+
|
457 |
+
self.resnets = nn.ModuleList(resnets)
|
458 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
459 |
+
|
460 |
+
if add_downsample:
|
461 |
+
self.downsamplers = nn.ModuleList(
|
462 |
+
[
|
463 |
+
Downsample2D(
|
464 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
465 |
+
)
|
466 |
+
]
|
467 |
+
)
|
468 |
+
else:
|
469 |
+
self.downsamplers = None
|
470 |
+
|
471 |
+
self.gradient_checkpointing = False
|
472 |
+
|
473 |
+
def forward(self, hidden_states, temb=None, num_frames=1):
|
474 |
+
output_states = ()
|
475 |
+
|
476 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
477 |
+
hidden_states = resnet(hidden_states, temb)
|
478 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
479 |
+
|
480 |
+
output_states += (hidden_states,)
|
481 |
+
|
482 |
+
if self.downsamplers is not None:
|
483 |
+
for downsampler in self.downsamplers:
|
484 |
+
hidden_states = downsampler(hidden_states)
|
485 |
+
|
486 |
+
output_states += (hidden_states,)
|
487 |
+
|
488 |
+
return hidden_states, output_states
|
489 |
+
|
490 |
+
|
491 |
+
class CrossAttnUpBlock3D(nn.Module):
|
492 |
+
def __init__(
|
493 |
+
self,
|
494 |
+
in_channels: int,
|
495 |
+
out_channels: int,
|
496 |
+
prev_output_channel: int,
|
497 |
+
temb_channels: int,
|
498 |
+
dropout: float = 0.0,
|
499 |
+
num_layers: int = 1,
|
500 |
+
resnet_eps: float = 1e-6,
|
501 |
+
resnet_time_scale_shift: str = "default",
|
502 |
+
resnet_act_fn: str = "swish",
|
503 |
+
resnet_groups: int = 32,
|
504 |
+
resnet_pre_norm: bool = True,
|
505 |
+
num_attention_heads=1,
|
506 |
+
cross_attention_dim=1280,
|
507 |
+
output_scale_factor=1.0,
|
508 |
+
add_upsample=True,
|
509 |
+
dual_cross_attention=False,
|
510 |
+
use_linear_projection=False,
|
511 |
+
only_cross_attention=False,
|
512 |
+
upcast_attention=False,
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
resnets = []
|
516 |
+
temp_convs = []
|
517 |
+
attentions = []
|
518 |
+
temp_attentions = []
|
519 |
+
|
520 |
+
self.has_cross_attention = True
|
521 |
+
self.num_attention_heads = num_attention_heads
|
522 |
+
|
523 |
+
for i in range(num_layers):
|
524 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
525 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
526 |
+
|
527 |
+
resnets.append(
|
528 |
+
ResnetBlock2D(
|
529 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
530 |
+
out_channels=out_channels,
|
531 |
+
temb_channels=temb_channels,
|
532 |
+
eps=resnet_eps,
|
533 |
+
groups=resnet_groups,
|
534 |
+
dropout=dropout,
|
535 |
+
time_embedding_norm=resnet_time_scale_shift,
|
536 |
+
non_linearity=resnet_act_fn,
|
537 |
+
output_scale_factor=output_scale_factor,
|
538 |
+
pre_norm=resnet_pre_norm,
|
539 |
+
)
|
540 |
+
)
|
541 |
+
temp_convs.append(
|
542 |
+
TemporalConvLayer(
|
543 |
+
out_channels,
|
544 |
+
out_channels,
|
545 |
+
dropout=0.1,
|
546 |
+
)
|
547 |
+
)
|
548 |
+
attentions.append(
|
549 |
+
Transformer2DModel(
|
550 |
+
out_channels // num_attention_heads,
|
551 |
+
num_attention_heads,
|
552 |
+
in_channels=out_channels,
|
553 |
+
num_layers=1,
|
554 |
+
cross_attention_dim=cross_attention_dim,
|
555 |
+
norm_num_groups=resnet_groups,
|
556 |
+
use_linear_projection=use_linear_projection,
|
557 |
+
only_cross_attention=only_cross_attention,
|
558 |
+
upcast_attention=upcast_attention,
|
559 |
+
)
|
560 |
+
)
|
561 |
+
temp_attentions.append(
|
562 |
+
TransformerTemporalModel(
|
563 |
+
out_channels // num_attention_heads,
|
564 |
+
num_attention_heads,
|
565 |
+
in_channels=out_channels,
|
566 |
+
num_layers=1,
|
567 |
+
cross_attention_dim=cross_attention_dim,
|
568 |
+
norm_num_groups=resnet_groups,
|
569 |
+
)
|
570 |
+
)
|
571 |
+
self.resnets = nn.ModuleList(resnets)
|
572 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
573 |
+
self.attentions = nn.ModuleList(attentions)
|
574 |
+
self.temp_attentions = nn.ModuleList(temp_attentions)
|
575 |
+
|
576 |
+
if add_upsample:
|
577 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
578 |
+
else:
|
579 |
+
self.upsamplers = None
|
580 |
+
|
581 |
+
self.gradient_checkpointing = False
|
582 |
+
|
583 |
+
def forward(
|
584 |
+
self,
|
585 |
+
hidden_states,
|
586 |
+
res_hidden_states_tuple,
|
587 |
+
temb=None,
|
588 |
+
encoder_hidden_states=None,
|
589 |
+
encoder_attention_mask=None,
|
590 |
+
upsample_size=None,
|
591 |
+
attention_mask=None,
|
592 |
+
num_frames=1,
|
593 |
+
cross_attention_kwargs=None,
|
594 |
+
**kwargs,
|
595 |
+
):
|
596 |
+
# TODO(Patrick, William) - attention mask is not used
|
597 |
+
for resnet, temp_conv, attn, temp_attn in zip(
|
598 |
+
self.resnets, self.temp_convs, self.attentions, self.temp_attentions
|
599 |
+
):
|
600 |
+
# pop res hidden states
|
601 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
602 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
603 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
604 |
+
|
605 |
+
hidden_states = resnet(hidden_states, temb)
|
606 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames) # This gives the 1280 dim
|
607 |
+
hidden_states = attn(
|
608 |
+
hidden_states,
|
609 |
+
encoder_hidden_states=encoder_hidden_states,
|
610 |
+
attention_mask=attention_mask, # TODO: check if this is correct
|
611 |
+
encoder_attention_mask=encoder_attention_mask,
|
612 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
613 |
+
return_dict=False,
|
614 |
+
**kwargs,
|
615 |
+
)[0]
|
616 |
+
hidden_states = temp_attn(
|
617 |
+
hidden_states, num_frames=num_frames, cross_attention_kwargs=cross_attention_kwargs, attention_mask=attention_mask, return_dict=False, **kwargs
|
618 |
+
)[0]
|
619 |
+
|
620 |
+
if self.upsamplers is not None:
|
621 |
+
for upsampler in self.upsamplers:
|
622 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
623 |
+
|
624 |
+
return hidden_states
|
625 |
+
|
626 |
+
|
627 |
+
class UpBlock3D(nn.Module):
|
628 |
+
def __init__(
|
629 |
+
self,
|
630 |
+
in_channels: int,
|
631 |
+
prev_output_channel: int,
|
632 |
+
out_channels: int,
|
633 |
+
temb_channels: int,
|
634 |
+
dropout: float = 0.0,
|
635 |
+
num_layers: int = 1,
|
636 |
+
resnet_eps: float = 1e-6,
|
637 |
+
resnet_time_scale_shift: str = "default",
|
638 |
+
resnet_act_fn: str = "swish",
|
639 |
+
resnet_groups: int = 32,
|
640 |
+
resnet_pre_norm: bool = True,
|
641 |
+
output_scale_factor=1.0,
|
642 |
+
add_upsample=True,
|
643 |
+
):
|
644 |
+
super().__init__()
|
645 |
+
resnets = []
|
646 |
+
temp_convs = []
|
647 |
+
|
648 |
+
for i in range(num_layers):
|
649 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
650 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
651 |
+
|
652 |
+
resnets.append(
|
653 |
+
ResnetBlock2D(
|
654 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
655 |
+
out_channels=out_channels,
|
656 |
+
temb_channels=temb_channels,
|
657 |
+
eps=resnet_eps,
|
658 |
+
groups=resnet_groups,
|
659 |
+
dropout=dropout,
|
660 |
+
time_embedding_norm=resnet_time_scale_shift,
|
661 |
+
non_linearity=resnet_act_fn,
|
662 |
+
output_scale_factor=output_scale_factor,
|
663 |
+
pre_norm=resnet_pre_norm,
|
664 |
+
)
|
665 |
+
)
|
666 |
+
temp_convs.append(
|
667 |
+
TemporalConvLayer(
|
668 |
+
out_channels,
|
669 |
+
out_channels,
|
670 |
+
dropout=0.1,
|
671 |
+
)
|
672 |
+
)
|
673 |
+
|
674 |
+
self.resnets = nn.ModuleList(resnets)
|
675 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
676 |
+
|
677 |
+
if add_upsample:
|
678 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
679 |
+
else:
|
680 |
+
self.upsamplers = None
|
681 |
+
|
682 |
+
self.gradient_checkpointing = False
|
683 |
+
|
684 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, num_frames=1):
|
685 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
686 |
+
# pop res hidden states
|
687 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
688 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
689 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
690 |
+
|
691 |
+
hidden_states = resnet(hidden_states, temb)
|
692 |
+
hidden_states = temp_conv(hidden_states, num_frames=num_frames)
|
693 |
+
|
694 |
+
if self.upsamplers is not None:
|
695 |
+
for upsampler in self.upsamplers:
|
696 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
697 |
+
|
698 |
+
return hidden_states
|
src/models/unet_3d_condition.py
ADDED
@@ -0,0 +1,673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
|
2 |
+
# Copyright 2023 The ModelScope Team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
24 |
+
from diffusers.utils import BaseOutput, logging
|
25 |
+
from .attention_processor import (
|
26 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
27 |
+
CROSS_ATTENTION_PROCESSORS,
|
28 |
+
AttentionProcessor,
|
29 |
+
AttnAddedKVProcessor,
|
30 |
+
AttnProcessor,
|
31 |
+
)
|
32 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
33 |
+
from diffusers.models.modeling_utils import ModelMixin
|
34 |
+
from .transformer_temporal import TransformerTemporalModel
|
35 |
+
from .unet_3d_blocks import (
|
36 |
+
CrossAttnDownBlock3D,
|
37 |
+
CrossAttnUpBlock3D,
|
38 |
+
DownBlock3D,
|
39 |
+
UNetMidBlock3DCrossAttn,
|
40 |
+
UpBlock3D,
|
41 |
+
get_down_block,
|
42 |
+
get_up_block,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
47 |
+
|
48 |
+
|
49 |
+
@dataclass
|
50 |
+
class UNet3DConditionOutput(BaseOutput):
|
51 |
+
"""
|
52 |
+
The output of [`UNet3DConditionModel`].
|
53 |
+
|
54 |
+
Args:
|
55 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
|
56 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
57 |
+
"""
|
58 |
+
|
59 |
+
sample: torch.FloatTensor
|
60 |
+
|
61 |
+
|
62 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
63 |
+
r"""
|
64 |
+
A conditional 3D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
65 |
+
shaped output.
|
66 |
+
|
67 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
68 |
+
for all models (such as downloading or saving).
|
69 |
+
|
70 |
+
Parameters:
|
71 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
72 |
+
Height and width of input/output sample.
|
73 |
+
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample.
|
74 |
+
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output.
|
75 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
76 |
+
The tuple of downsample blocks to use.
|
77 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
78 |
+
The tuple of upsample blocks to use.
|
79 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
80 |
+
The tuple of output channels for each block.
|
81 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
82 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
83 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
84 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
85 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
86 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
87 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
88 |
+
cross_attention_dim (`int`, *optional*, defaults to 1280): The dimension of the cross attention features.
|
89 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
90 |
+
num_attention_heads (`int`, *optional*): The number of attention heads.
|
91 |
+
"""
|
92 |
+
|
93 |
+
_supports_gradient_checkpointing = False
|
94 |
+
|
95 |
+
@register_to_config
|
96 |
+
def __init__(
|
97 |
+
self,
|
98 |
+
sample_size: Optional[int] = None,
|
99 |
+
in_channels: int = 4,
|
100 |
+
out_channels: int = 4,
|
101 |
+
down_block_types: Tuple[str] = (
|
102 |
+
"CrossAttnDownBlock3D",
|
103 |
+
"CrossAttnDownBlock3D",
|
104 |
+
"CrossAttnDownBlock3D",
|
105 |
+
"DownBlock3D",
|
106 |
+
),
|
107 |
+
up_block_types: Tuple[str] = ("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D"),
|
108 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
109 |
+
layers_per_block: int = 2,
|
110 |
+
downsample_padding: int = 1,
|
111 |
+
mid_block_scale_factor: float = 1,
|
112 |
+
act_fn: str = "silu",
|
113 |
+
norm_num_groups: Optional[int] = 32,
|
114 |
+
norm_eps: float = 1e-5,
|
115 |
+
cross_attention_dim: int = 1024,
|
116 |
+
attention_head_dim: Union[int, Tuple[int]] = 64,
|
117 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
118 |
+
):
|
119 |
+
super().__init__()
|
120 |
+
|
121 |
+
self.sample_size = sample_size
|
122 |
+
|
123 |
+
if num_attention_heads is not None:
|
124 |
+
raise NotImplementedError(
|
125 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
126 |
+
)
|
127 |
+
|
128 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
129 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
130 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
131 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
132 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
133 |
+
# which is why we correct for the naming here.
|
134 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
135 |
+
|
136 |
+
# Check inputs
|
137 |
+
if len(down_block_types) != len(up_block_types):
|
138 |
+
raise ValueError(
|
139 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
140 |
+
)
|
141 |
+
|
142 |
+
if len(block_out_channels) != len(down_block_types):
|
143 |
+
raise ValueError(
|
144 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
145 |
+
)
|
146 |
+
|
147 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
148 |
+
raise ValueError(
|
149 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
150 |
+
)
|
151 |
+
|
152 |
+
# input
|
153 |
+
conv_in_kernel = 3
|
154 |
+
conv_out_kernel = 3
|
155 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
156 |
+
self.conv_in = nn.Conv2d(
|
157 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
158 |
+
)
|
159 |
+
|
160 |
+
# time
|
161 |
+
time_embed_dim = block_out_channels[0] * 4
|
162 |
+
self.time_proj = Timesteps(block_out_channels[0], True, 0)
|
163 |
+
timestep_input_dim = block_out_channels[0]
|
164 |
+
|
165 |
+
self.time_embedding = TimestepEmbedding(
|
166 |
+
timestep_input_dim,
|
167 |
+
time_embed_dim,
|
168 |
+
act_fn=act_fn,
|
169 |
+
)
|
170 |
+
|
171 |
+
self.transformer_in = TransformerTemporalModel(
|
172 |
+
num_attention_heads=8,
|
173 |
+
attention_head_dim=attention_head_dim,
|
174 |
+
in_channels=block_out_channels[0],
|
175 |
+
num_layers=1,
|
176 |
+
)
|
177 |
+
|
178 |
+
# class embedding
|
179 |
+
self.down_blocks = nn.ModuleList([])
|
180 |
+
self.up_blocks = nn.ModuleList([])
|
181 |
+
|
182 |
+
if isinstance(num_attention_heads, int):
|
183 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
184 |
+
|
185 |
+
# down
|
186 |
+
output_channel = block_out_channels[0]
|
187 |
+
for i, down_block_type in enumerate(down_block_types):
|
188 |
+
input_channel = output_channel
|
189 |
+
output_channel = block_out_channels[i]
|
190 |
+
is_final_block = i == len(block_out_channels) - 1
|
191 |
+
|
192 |
+
down_block = get_down_block(
|
193 |
+
down_block_type,
|
194 |
+
num_layers=layers_per_block,
|
195 |
+
in_channels=input_channel,
|
196 |
+
out_channels=output_channel,
|
197 |
+
temb_channels=time_embed_dim,
|
198 |
+
add_downsample=not is_final_block,
|
199 |
+
resnet_eps=norm_eps,
|
200 |
+
resnet_act_fn=act_fn,
|
201 |
+
resnet_groups=norm_num_groups,
|
202 |
+
cross_attention_dim=cross_attention_dim,
|
203 |
+
num_attention_heads=num_attention_heads[i],
|
204 |
+
downsample_padding=downsample_padding,
|
205 |
+
dual_cross_attention=False,
|
206 |
+
)
|
207 |
+
self.down_blocks.append(down_block)
|
208 |
+
|
209 |
+
# mid
|
210 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
211 |
+
in_channels=block_out_channels[-1],
|
212 |
+
temb_channels=time_embed_dim,
|
213 |
+
resnet_eps=norm_eps,
|
214 |
+
resnet_act_fn=act_fn,
|
215 |
+
output_scale_factor=mid_block_scale_factor,
|
216 |
+
cross_attention_dim=cross_attention_dim,
|
217 |
+
num_attention_heads=num_attention_heads[-1],
|
218 |
+
resnet_groups=norm_num_groups,
|
219 |
+
dual_cross_attention=False,
|
220 |
+
)
|
221 |
+
|
222 |
+
# count how many layers upsample the images
|
223 |
+
self.num_upsamplers = 0
|
224 |
+
|
225 |
+
# up
|
226 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
227 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
228 |
+
|
229 |
+
output_channel = reversed_block_out_channels[0]
|
230 |
+
for i, up_block_type in enumerate(up_block_types):
|
231 |
+
is_final_block = i == len(block_out_channels) - 1
|
232 |
+
|
233 |
+
prev_output_channel = output_channel
|
234 |
+
output_channel = reversed_block_out_channels[i]
|
235 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
236 |
+
|
237 |
+
# add upsample block for all BUT final layer
|
238 |
+
if not is_final_block:
|
239 |
+
add_upsample = True
|
240 |
+
self.num_upsamplers += 1
|
241 |
+
else:
|
242 |
+
add_upsample = False
|
243 |
+
|
244 |
+
up_block = get_up_block(
|
245 |
+
up_block_type,
|
246 |
+
num_layers=layers_per_block + 1,
|
247 |
+
in_channels=input_channel,
|
248 |
+
out_channels=output_channel,
|
249 |
+
prev_output_channel=prev_output_channel,
|
250 |
+
temb_channels=time_embed_dim,
|
251 |
+
add_upsample=add_upsample,
|
252 |
+
resnet_eps=norm_eps,
|
253 |
+
resnet_act_fn=act_fn,
|
254 |
+
resnet_groups=norm_num_groups,
|
255 |
+
cross_attention_dim=cross_attention_dim,
|
256 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
257 |
+
dual_cross_attention=False,
|
258 |
+
)
|
259 |
+
self.up_blocks.append(up_block)
|
260 |
+
prev_output_channel = output_channel
|
261 |
+
|
262 |
+
# out
|
263 |
+
if norm_num_groups is not None:
|
264 |
+
self.conv_norm_out = nn.GroupNorm(
|
265 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
266 |
+
)
|
267 |
+
self.conv_act = nn.SiLU()
|
268 |
+
else:
|
269 |
+
self.conv_norm_out = None
|
270 |
+
self.conv_act = None
|
271 |
+
|
272 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
273 |
+
self.conv_out = nn.Conv2d(
|
274 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
275 |
+
)
|
276 |
+
|
277 |
+
@property
|
278 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
279 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
280 |
+
r"""
|
281 |
+
Returns:
|
282 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
283 |
+
indexed by its weight name.
|
284 |
+
"""
|
285 |
+
# set recursively
|
286 |
+
processors = {}
|
287 |
+
|
288 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
289 |
+
if hasattr(module, "get_processor"):
|
290 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
291 |
+
|
292 |
+
for sub_name, child in module.named_children():
|
293 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
294 |
+
|
295 |
+
return processors
|
296 |
+
|
297 |
+
for name, module in self.named_children():
|
298 |
+
fn_recursive_add_processors(name, module, processors)
|
299 |
+
|
300 |
+
return processors
|
301 |
+
|
302 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
303 |
+
def set_attention_slice(self, slice_size):
|
304 |
+
r"""
|
305 |
+
Enable sliced attention computation.
|
306 |
+
|
307 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
308 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
309 |
+
|
310 |
+
Args:
|
311 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
312 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
313 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
314 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
315 |
+
must be a multiple of `slice_size`.
|
316 |
+
"""
|
317 |
+
sliceable_head_dims = []
|
318 |
+
|
319 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
320 |
+
if hasattr(module, "set_attention_slice"):
|
321 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
322 |
+
|
323 |
+
for child in module.children():
|
324 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
325 |
+
|
326 |
+
# retrieve number of attention layers
|
327 |
+
for module in self.children():
|
328 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
329 |
+
|
330 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
331 |
+
|
332 |
+
if slice_size == "auto":
|
333 |
+
# half the attention head size is usually a good trade-off between
|
334 |
+
# speed and memory
|
335 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
336 |
+
elif slice_size == "max":
|
337 |
+
# make smallest slice possible
|
338 |
+
slice_size = num_sliceable_layers * [1]
|
339 |
+
|
340 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
341 |
+
|
342 |
+
if len(slice_size) != len(sliceable_head_dims):
|
343 |
+
raise ValueError(
|
344 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
345 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
346 |
+
)
|
347 |
+
|
348 |
+
for i in range(len(slice_size)):
|
349 |
+
size = slice_size[i]
|
350 |
+
dim = sliceable_head_dims[i]
|
351 |
+
if size is not None and size > dim:
|
352 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
353 |
+
|
354 |
+
# Recursively walk through all the children.
|
355 |
+
# Any children which exposes the set_attention_slice method
|
356 |
+
# gets the message
|
357 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
358 |
+
if hasattr(module, "set_attention_slice"):
|
359 |
+
module.set_attention_slice(slice_size.pop())
|
360 |
+
|
361 |
+
for child in module.children():
|
362 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
363 |
+
|
364 |
+
reversed_slice_size = list(reversed(slice_size))
|
365 |
+
for module in self.children():
|
366 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
367 |
+
|
368 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
369 |
+
def set_attn_processor(
|
370 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]], _remove_lora=False
|
371 |
+
):
|
372 |
+
r"""
|
373 |
+
Sets the attention processor to use to compute attention.
|
374 |
+
|
375 |
+
Parameters:
|
376 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
377 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
378 |
+
for **all** `Attention` layers.
|
379 |
+
|
380 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
381 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
382 |
+
|
383 |
+
"""
|
384 |
+
count = len(self.attn_processors.keys())
|
385 |
+
|
386 |
+
if isinstance(processor, dict) and len(processor) != count:
|
387 |
+
raise ValueError(
|
388 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
389 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
390 |
+
)
|
391 |
+
|
392 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
393 |
+
if hasattr(module, "set_processor"):
|
394 |
+
if not isinstance(processor, dict):
|
395 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
396 |
+
else:
|
397 |
+
module.set_processor(processor.pop(f"{name}.processor"), _remove_lora=_remove_lora)
|
398 |
+
|
399 |
+
for sub_name, child in module.named_children():
|
400 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
401 |
+
|
402 |
+
for name, module in self.named_children():
|
403 |
+
fn_recursive_attn_processor(name, module, processor)
|
404 |
+
|
405 |
+
def enable_forward_chunking(self, chunk_size=None, dim=0):
|
406 |
+
"""
|
407 |
+
Sets the attention processor to use [feed forward
|
408 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
409 |
+
|
410 |
+
Parameters:
|
411 |
+
chunk_size (`int`, *optional*):
|
412 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
413 |
+
over each tensor of dim=`dim`.
|
414 |
+
dim (`int`, *optional*, defaults to `0`):
|
415 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
416 |
+
or dim=1 (sequence length).
|
417 |
+
"""
|
418 |
+
if dim not in [0, 1]:
|
419 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
420 |
+
|
421 |
+
# By default chunk size is 1
|
422 |
+
chunk_size = chunk_size or 1
|
423 |
+
|
424 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
425 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
426 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
427 |
+
|
428 |
+
for child in module.children():
|
429 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
430 |
+
|
431 |
+
for module in self.children():
|
432 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
433 |
+
|
434 |
+
def disable_forward_chunking(self):
|
435 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
436 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
437 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
438 |
+
|
439 |
+
for child in module.children():
|
440 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
441 |
+
|
442 |
+
for module in self.children():
|
443 |
+
fn_recursive_feed_forward(module, None, 0)
|
444 |
+
|
445 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
446 |
+
def set_default_attn_processor(self):
|
447 |
+
"""
|
448 |
+
Disables custom attention processors and sets the default attention implementation.
|
449 |
+
"""
|
450 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
451 |
+
processor = AttnAddedKVProcessor()
|
452 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
453 |
+
processor = AttnProcessor()
|
454 |
+
else:
|
455 |
+
raise ValueError(
|
456 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
457 |
+
)
|
458 |
+
|
459 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
460 |
+
|
461 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
462 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
463 |
+
module.gradient_checkpointing = value
|
464 |
+
|
465 |
+
def forward(
|
466 |
+
self,
|
467 |
+
sample: torch.FloatTensor,
|
468 |
+
timestep: Union[torch.Tensor, float, int],
|
469 |
+
encoder_hidden_states: torch.Tensor,
|
470 |
+
class_labels: Optional[torch.Tensor] = None,
|
471 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
472 |
+
attention_mask: Optional[torch.Tensor] = None,
|
473 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
474 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
475 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
476 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
477 |
+
return_dict: bool = True,
|
478 |
+
**kwargs,
|
479 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
480 |
+
r"""
|
481 |
+
The [`UNet3DConditionModel`] forward method.
|
482 |
+
|
483 |
+
Args:
|
484 |
+
sample (`torch.FloatTensor`):
|
485 |
+
The noisy input tensor with the following shape `(batch, num_frames, channel, height, width`.
|
486 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
487 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
488 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
489 |
+
encoder_attention_masl (`torch.FloatTensor`, *optional*): Masks out the encoder hidden states for cross
|
490 |
+
attention.
|
491 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
492 |
+
Whether or not to return a [`~models.unet_3d_condition.UNet3DConditionOutput`] instead of a plain
|
493 |
+
tuple.
|
494 |
+
cross_attention_kwargs (`dict`, *optional*):
|
495 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
496 |
+
|
497 |
+
Returns:
|
498 |
+
[`~models.unet_3d_condition.UNet3DConditionOutput`] or `tuple`:
|
499 |
+
If `return_dict` is True, an [`~models.unet_3d_condition.UNet3DConditionOutput`] is returned, otherwise
|
500 |
+
a `tuple` is returned where the first element is the sample tensor.
|
501 |
+
"""
|
502 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
503 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
504 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
505 |
+
# on the fly if necessary.
|
506 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
507 |
+
|
508 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
509 |
+
forward_upsample_size = False
|
510 |
+
upsample_size = None
|
511 |
+
|
512 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
513 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
514 |
+
forward_upsample_size = True
|
515 |
+
|
516 |
+
# prepare attention_mask
|
517 |
+
if attention_mask is not None:
|
518 |
+
if not isinstance(attention_mask, list):
|
519 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
520 |
+
if len(attention_mask.shape) == 2: # Else we are already passing a 2d mask
|
521 |
+
attention_mask = attention_mask.unsqueeze(1)
|
522 |
+
else:
|
523 |
+
attention_mask = [(1 - mask.to(sample.dtype)) * -10000.0 for mask in attention_mask]
|
524 |
+
if len(attention_mask[0].shape) == 2:
|
525 |
+
attention_mask = [mask.unsqueeze(1) for mask in attention_mask]
|
526 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
527 |
+
if encoder_attention_mask is not None:
|
528 |
+
if not isinstance(encoder_attention_mask, list):
|
529 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
530 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
531 |
+
else:
|
532 |
+
encoder_attention_mask = [(1 - mask.to(sample.dtype)) * -10000.0 for mask in encoder_attention_mask]
|
533 |
+
if len(encoder_attention_mask[0].shape) == 2:
|
534 |
+
encoder_attention_mask = [mask.unsqueeze(1) for mask in encoder_attention_mask]
|
535 |
+
|
536 |
+
# 1. time
|
537 |
+
timesteps = timestep
|
538 |
+
if not torch.is_tensor(timesteps):
|
539 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
540 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
541 |
+
is_mps = sample.device.type == "mps"
|
542 |
+
if isinstance(timestep, float):
|
543 |
+
dtype = torch.float32 if is_mps else torch.float64
|
544 |
+
else:
|
545 |
+
dtype = torch.int32 if is_mps else torch.int64
|
546 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
547 |
+
elif len(timesteps.shape) == 0:
|
548 |
+
timesteps = timesteps[None].to(sample.device)
|
549 |
+
|
550 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
551 |
+
num_frames = sample.shape[2]
|
552 |
+
timesteps = timesteps.expand(sample.shape[0])
|
553 |
+
|
554 |
+
t_emb = self.time_proj(timesteps)
|
555 |
+
|
556 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
557 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
558 |
+
# there might be better ways to encapsulate this.
|
559 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
560 |
+
|
561 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
562 |
+
emb = emb.repeat_interleave(repeats=num_frames, dim=0)
|
563 |
+
encoder_hidden_states = encoder_hidden_states.repeat_interleave(repeats=num_frames, dim=0)
|
564 |
+
|
565 |
+
# 2. pre-process
|
566 |
+
sample = sample.permute(0, 2, 1, 3, 4).reshape((sample.shape[0] * num_frames, -1) + sample.shape[3:])
|
567 |
+
sample = self.conv_in(sample)
|
568 |
+
|
569 |
+
sample = self.transformer_in(
|
570 |
+
sample,
|
571 |
+
num_frames=num_frames,
|
572 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
573 |
+
return_dict=False,
|
574 |
+
attention_mask = None,
|
575 |
+
encoder_attention_mask = None,
|
576 |
+
)[0]
|
577 |
+
|
578 |
+
# 3. down
|
579 |
+
down_block_res_samples = (sample,)
|
580 |
+
for downsample_block in self.down_blocks:
|
581 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
582 |
+
sample, res_samples = downsample_block(
|
583 |
+
hidden_states=sample,
|
584 |
+
temb=emb,
|
585 |
+
encoder_hidden_states=encoder_hidden_states,
|
586 |
+
encoder_attention_mask=None,
|
587 |
+
attention_mask=None,
|
588 |
+
num_frames=num_frames,
|
589 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
590 |
+
**kwargs,
|
591 |
+
|
592 |
+
)
|
593 |
+
else:
|
594 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, num_frames=num_frames)
|
595 |
+
|
596 |
+
down_block_res_samples += res_samples
|
597 |
+
|
598 |
+
if down_block_additional_residuals is not None:
|
599 |
+
new_down_block_res_samples = ()
|
600 |
+
|
601 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
602 |
+
down_block_res_samples, down_block_additional_residuals
|
603 |
+
):
|
604 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
605 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
606 |
+
|
607 |
+
down_block_res_samples = new_down_block_res_samples
|
608 |
+
|
609 |
+
# 4. mid
|
610 |
+
if self.mid_block is not None:
|
611 |
+
sample = self.mid_block(
|
612 |
+
sample,
|
613 |
+
emb,
|
614 |
+
encoder_hidden_states=encoder_hidden_states,
|
615 |
+
encoder_attention_mask=encoder_attention_mask,
|
616 |
+
attention_mask=attention_mask,
|
617 |
+
num_frames=num_frames,
|
618 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
619 |
+
**kwargs,
|
620 |
+
|
621 |
+
)
|
622 |
+
|
623 |
+
if mid_block_additional_residual is not None:
|
624 |
+
sample = sample + mid_block_additional_residual
|
625 |
+
|
626 |
+
# 5. up
|
627 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
628 |
+
is_final_block = i == len(self.up_blocks) - 1
|
629 |
+
|
630 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
631 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
632 |
+
|
633 |
+
# if we have not reached the final block and need to forward the
|
634 |
+
# upsample size, we do it here
|
635 |
+
if not is_final_block and forward_upsample_size:
|
636 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
637 |
+
|
638 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
639 |
+
sample = upsample_block(
|
640 |
+
hidden_states=sample,
|
641 |
+
temb=emb,
|
642 |
+
res_hidden_states_tuple=res_samples,
|
643 |
+
encoder_hidden_states=encoder_hidden_states,
|
644 |
+
encoder_attention_mask=encoder_attention_mask,
|
645 |
+
upsample_size=upsample_size,
|
646 |
+
attention_mask=attention_mask,
|
647 |
+
num_frames=num_frames,
|
648 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
649 |
+
**kwargs,
|
650 |
+
)
|
651 |
+
else:
|
652 |
+
sample = upsample_block(
|
653 |
+
hidden_states=sample,
|
654 |
+
temb=emb,
|
655 |
+
res_hidden_states_tuple=res_samples,
|
656 |
+
upsample_size=upsample_size,
|
657 |
+
num_frames=num_frames,
|
658 |
+
)
|
659 |
+
|
660 |
+
# 6. post-process
|
661 |
+
if self.conv_norm_out:
|
662 |
+
sample = self.conv_norm_out(sample)
|
663 |
+
sample = self.conv_act(sample)
|
664 |
+
|
665 |
+
sample = self.conv_out(sample)
|
666 |
+
|
667 |
+
# reshape to (batch, channel, framerate, width, height)
|
668 |
+
sample = sample[None, :].reshape((-1, num_frames) + sample.shape[1:]).permute(0, 2, 1, 3, 4)
|
669 |
+
|
670 |
+
if not return_dict:
|
671 |
+
return (sample,)
|
672 |
+
|
673 |
+
return UNet3DConditionOutput(sample=sample)
|