File size: 14,734 Bytes
525264a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f343a
 
 
 
 
525264a
 
 
f2f343a
 
525264a
 
 
 
 
 
 
 
 
 
f2f343a
525264a
 
 
 
 
 
 
 
 
 
 
 
f2f343a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525264a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f343a
525264a
 
 
 
 
 
 
 
 
 
 
f2f343a
525264a
f2f343a
525264a
f2f343a
 
525264a
f2f343a
 
 
525264a
 
 
 
 
 
 
 
 
 
 
 
f2f343a
 
525264a
 
 
 
f2f343a
 
 
 
525264a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f343a
525264a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2f343a
 
 
 
 
525264a
 
f2f343a
525264a
 
f2f343a
525264a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import os
import csv
import json
import torch
import shutil
import textwrap
import numpy as np
import pandas as pd
import streamlit as st
from tqdm.auto import tqdm
from collections import Counter
from tokenizers import Tokenizer
import plotly.graph_objects as go
from huggingface_hub import whoami, HfApi
from transformers import AutoModel, AutoTokenizer, PreTrainedTokenizerFast, pipeline


LANGUAGES = {
    "french": {"emoji":"🇫🇷", "nllb_code":"fra_Latn", "hf_code":"fr"},
    "english": {"emoji":"🇬🇧", "nllb_code":"eng_Latn", "hf_code":"en"},
    "german": {"emoji":"🇩🇪", "nllb_code":"deu_Latn", "hf_code":"de"},
    "italian": {"emoji":"🇮🇹", "nllb_code":"ita_Latn", "hf_code":"it"},
    "spanish": {"emoji":"🇪🇸", "nllb_code":"spa_Latn", "hf_code":"es"},
    "portuguese": {"emoji":"🇵🇹", "nllb_code":"por_Latn", "hf_code":"pt"}
}

MODELS = [
    "intfloat/multilingual-e5-small",
    "intfloat/multilingual-e5-base",
    "intfloat/multilingual-e5-large",
    "BAAI/bge-m3",
    "Alibaba-NLP/gte-multilingual-base",
    #"jinaai/jina-embeddings-v3", # TODO: uses ParametrizedEmbedding
]

def estimate_pruned_vocabulary(tokenizer: PreTrainedTokenizerFast, language: str):
    """
    Estimate the most common tokens in the language. You should first download the 1M sentences dataset for the desired language.
    Source: https://wortschatz.uni-leipzig.de/en/download/English
    """
    sentences_file = f'data.nosync/{language}_news_2020_1M-sentences.txt'
    if os.path.exists(sentences_file):
        df = pd.read_csv(sentences_file, sep='\t', header=None, quoting=csv.QUOTE_NONE, names=['id', 'text'])
        counter = Counter(tokenizer.all_special_tokens)
        counter.update(tok for t in tqdm(df.text) for tok in tokenizer.tokenize(t))
        with open(f"data.nosync/{language}_filtered_tokens.txt", "w") as f:
            f.write("\n".join(map(str, set(counter))))
    else:
        raise FileNotFoundError

def get_pruned_vocabulary(language: str):
    filtered_tokens_file = f"data.nosync/{language}_filtered_tokens.txt"
    if os.path.exists(filtered_tokens_file):
        with open(filtered_tokens_file, "r") as f:
            return set(f.read().splitlines())
    else:
        raise FileNotFoundError(f"No filtered tokens file found for language {language}. Please run `estimate_pruned_vocabulary` first.")

@st.cache_resource
def load_model_and_tokenizer(model_name: str):
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
    return model, tokenizer

def count_parameters(model, layer_name: str = None):
    return sum(p.numel() for name, p in model.named_parameters() if layer_name is None or name.startswith(layer_name))

@st.cache_resource
def get_test_sentence(target_lang: str, source_lang: str = "eng_Latn"):
    text = """
    Alan Mathison Turing (23 June 1912 - 7 June 1954) was an English mathematician, 
    computer scientist, logician, cryptanalyst, philosopher and theoretical biologist.
    """
    if target_lang == "eng_Latn":
        return text
    model_name = "facebook/nllb-200-distilled-600M"
    translator = pipeline(task="translation", tokenizer=model_name, model=model_name)
    return translator(text, src_lang=source_lang, tgt_lang=target_lang)[0]['translation_text']

def push_to_hub(hf_username: str, hf_token: str, model_dir: str, private: bool = False):
    print(f"'{hf_token}'")
    _ = whoami(token=hf_token)
    api = HfApi(endpoint="https://huggingface.co", token=hf_token)
    repo_id = f"{hf_username}/{model_dir.split('/')[-1]}"
    api.create_repo(repo_id=repo_id, repo_type="model", private=private)
    api.upload_folder(repo_id=repo_id, folder_path=model_dir, commit_message="Upload pruned model")

def prune_model(model_name: str, language: str, hf_username: str, hf_token: str):
    st.markdown(f"- Let's prune the [**{model_name}**](https://huggingface.co/{model_name}) model to keep its **{language.capitalize()}** tokens only.")

    # Load the model and its tokenizer
    model, tokenizer = load_model_and_tokenizer(model_name)

    # Calculate parameters for the original model
    all_params = count_parameters(model)
    encoder_params = count_parameters(model, layer_name="encoder")
    embedding_params = count_parameters(model, layer_name="embeddings")

    st.markdown(
        f"- The original model has **{all_params/1e6:.1f}M** parameters, of which **{embedding_params/all_params*100:.0f}%** "+
        f"(i.e., {embedding_params/1e6:.1f}M params) come from the *embedding matrix* and its {tokenizer.vocab_size} token entries. "+
        f"This means that the contextualization of text sequences is actually done by a *{model.config.num_hidden_layers}-layer Transformer encoder* "+
        f"with **{encoder_params/1e6:.1f}M** parameters only."
    )

    # Estimate the most used tokens in the language.
    filtered_tokens = get_pruned_vocabulary(language)
    st.markdown(
        f"- {language.capitalize()} seems to only use **{len(filtered_tokens)/tokenizer.vocab_size*100:.0f}%** "+
        f"of the model vocabulary (i.e., {len(filtered_tokens)} out of the original {tokenizer.vocab_size} tokens)."
    )
    
    with st.status("Pruning the model...", expanded=True) as status:
        st.write("- *Updating the tokenizer*")
        outdir = f"{language}-{model_name.split('/')[-1]}"

        # Export the tokenizer to a JSON string and access its vocabulary (list of lists: [[token, score], ...])
        tokenizer_json = json.loads(tokenizer.backend_tokenizer.to_str())
        original_vocab = tokenizer_json['model']['vocab']

        # Build a mapping from tokens to their original IDs
        original_token_to_id = {entry[0]: idx for idx, entry in enumerate(original_vocab)}

        # Filter out the tokens to remove and reassign new IDs
        new_id = 0
        new_token_to_id = {}
        new_id_to_original_id = {}
        filtered_vocab_entries = []

        for token, score in original_vocab:
            if token in filtered_tokens:
                filtered_vocab_entries.append([token, score])
                new_token_to_id[token] = new_id
                new_id_to_original_id[new_id] = original_token_to_id[token]
                new_id += 1

        # Update the vocab in the tokenizer JSON and rebuild the tokenizer from the modified JSON
        tokenizer_json['model']['vocab'] = filtered_vocab_entries
        new_backend_tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))

        # Create a new tokenizer instance and save it
        new_tokenizer = PreTrainedTokenizerFast(tokenizer_object=new_backend_tokenizer, **tokenizer.init_kwargs)
        new_tokenizer.save_pretrained(outdir)

        st.write("- *Updating the embedding matrix*")
        new_model = AutoModel.from_pretrained(model_name, trust_remote_code=True)

        # Create a new embedding matrix and map the original vectors to their new IDs
        original_embeddings = new_model.get_input_embeddings().weight.data
        new_embeddings = torch.nn.Embedding(
            num_embeddings=new_tokenizer.vocab_size,
            embedding_dim=model.config.hidden_size,
            padding_idx=new_tokenizer.pad_token_id,
        )

        for new_id in range(new_tokenizer.vocab_size):
            original_id = new_id_to_original_id.get(new_id)
            new_embeddings.weight.data[new_id] = original_embeddings[original_id]

        new_model.set_input_embeddings(new_embeddings)
        new_model.config.vocab_size = new_tokenizer.vocab_size
        new_model.save_pretrained(outdir)

        status.update(state="complete", expanded=True)

    with st.status("Testing the conversion...", expanded=True) as status:
        st.write(f"- *Checking the pruned tokenizer*")
        assert len(new_tokenizer) == len(filtered_tokens), f"ERROR: new tokenizer size ({len(new_tokenizer)}) != number of filtered tokens ({len(filtered_tokens)})"
        assert filtered_tokens == set(new_tokenizer.convert_ids_to_tokens(range(len(new_tokenizer)))), f"ERROR: The new tokenizer vocabulary doesn't match number of the filtered tokens"

        st.write(f"- *Checking the pruned model*")
        test_sentence = get_test_sentence(LANGUAGES[language]['nllb_code'])
        with torch.inference_mode():
            emb1 = model(**tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy()
            emb2 = new_model(**new_tokenizer(test_sentence, return_tensors='pt')).last_hidden_state[:, 0][0].numpy()
        diff = np.abs(emb1 - emb2).max()
        assert diff < 1e-6, f"ERROR: Some dimensions of the two vectors have a non negligible difference ({diff})"

        st.write(f"""All good! The output *[cls]* token embedding of the test sentence *"{test_sentence}"* should be similar:""")
        col1, col2 = st.columns(2)
        with col1:
            st.markdown("Original model:")
            st.code(f"{emb1.tolist()}")
        with col2:
            st.markdown("Pruned model:")
            st.code(f"{emb2.tolist()}")

        status.update(state="complete", expanded=True)
    
    # Show visually the result of the pruning process
    pruned_all_params = count_parameters(new_model)
    pruned_encoder_params = count_parameters(new_model, layer_name="encoder")
    pruned_embedding_params = count_parameters(new_model, layer_name="embeddings")
    st.markdown(f"The pruned model is **{pruned_all_params/all_params*100:.1f}%** of the original model size.")
    data = {
        'Model': ['Original', 'Pruned'],
        'Embedding': [embedding_params / 1e6, pruned_embedding_params / 1e6],
        'Encoder': [encoder_params / 1e6, pruned_encoder_params / 1e6]
    }
    fig = go.Figure(data=[
        go.Bar(name='Embedding matrix', x=data['Model'], y=data['Embedding'], text=data['Embedding'], textposition='inside', marker_color='#E5B4B4'),
        go.Bar(name='Transformer encoder', x=data['Model'], y=data['Encoder'], text=data['Encoder'], textposition='inside', marker_color='#7FBFE0')
    ])
    fig.update_layout(barmode='stack', yaxis_title='# Params (M)', height=400, margin=dict(t=10, b=10))
    fig.update_traces(texttemplate='%{text:.1f}M', textposition='inside', insidetextanchor='middle')
    st.plotly_chart(fig)
    
    # Add a README to the pruned model repo
    new_model_name = f"{hf_username}/{outdir.split('/')[-1]}"
    readme_content = textwrap.dedent(f"""
    ---
    pipeline_tag: sentence-similarity
    language: {LANGUAGES[language]['hf_code']}
    license: mit
    tags:
    - passage-retrieval
    - sentence-similarity
    - pruned
    library_name: sentence-transformers
    base_model: {model_name}
    base_model_relation: quantized
    ---
    # {LANGUAGES[language]['emoji']} {new_model_name.split('/')[-1]}

    This model is a {100 - pruned_all_params/all_params*100:.1f}% smaller version of [{model_name}](https://huggingface.co/{model_name}) 
    for the {language.capitalize()} language, created using the [mtem-pruner](https://huggingface.co/spaces/antoinelouis/mtem-pruner) space.

    This pruned model should perform similarly to the original model for {language.capitalize()} language tasks with a much smaller 
    memory footprint. However, it may not perform well for other languages present in the original multilingual model as tokens not 
    commonly used in {language.capitalize()} were removed from the original multilingual model's vocabulary.

    ## Usage

    You can use this model with the Transformers library:

    ```python
    from transformers import AutoModel, AutoTokenizer

    model_name = "{new_model_name}"
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
    ```

    **Credits**: cc [@antoinelouis](https://huggingface.co/antoinelouis)
    """)
    with open(os.path.join(outdir, "README.md"), "w") as f:
        f.write(readme_content)

    with st.status("Pushing the pruned model to your Hugging Face account...", expanded=True) as status:
        #push_to_hub(hf_username, hf_token, outdir)
        shutil.rmtree(outdir)
        status.update(state="complete", expanded=False)

    st.markdown("Done! You can now load your pruned model like this:")
    st.code(f"""
    from transformers import AutoModel, AutoTokenizer
    
    model_name = "{new_model_name}"
    model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=True)
    """, language="python")
    

def main():
    st.header("Multilingual Text Embedding Model Pruner")    
    st.markdown("""
    This space helps you create a smaller, language-specific version of a multilingual text embedding model. Here's what it does:

    1. 🌎 Takes a state-of-the-art text embedding model that was trained on many languages
    2. ✂️ Trims it down to focus on just one language by removing unused tokens from its vocabulary
     3. 🚀 Gives you a smaller model that works just as well for your chosen language

    #### Why is this useful?

    - 💾 Get the same performance in your language with a much smaller model size
    - 🌐 Great for low-resource environments with limited RAM

    Ready to shrink your model? Let's get started!
    """)
    
    model_name = st.selectbox("Choose a multilingual model", MODELS)
    language = st.selectbox(
        "Pick your target language",
        options=list(LANGUAGES.keys()),
        format_func=lambda x: f"{LANGUAGES[x]['emoji']} {x.capitalize()}"
    )
    col1, col2 = st.columns(2)
    with col1:
        hf_username = st.text_input("Your Hugging Face username", placeholder="antoinelouis")
    with col2:
        hf_token = st.text_input("Your Hugging Face access token", type="password", placeholder="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")
    
    if st.button("Prune Model"):
        if not hf_username or not hf_token:
            st.error("Your HF username and access token is required to save the pruned model on your account.")
        else:
            prune_model(model_name, language, hf_username, hf_token)

    st.markdown(
        """
        <style>
        .credits {
            position: fixed;
            right: 10px;
            bottom: 10px;
            color: #888888;
            font-size: 11px;
        }
        </style>
        <div class="credits">
            Credits to <a href="https://gist.github.com/avidale/44cd35bfcdaf8bedf51d97c468cc8001" target="_blank">@avidale</a> for inspiration.
        </div>
        """,
        unsafe_allow_html=True
    )

if __name__ == "__main__":
    main()