File size: 634 Bytes
e019169
 
7ec4e24
35d23eb
4db7dc5
 
7f44a5d
e019169
 
 
 
 
 
 
4db7dc5
 
e019169
 
 
 
 
4db7dc5
e019169
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from transformers import pipeline
import gradio as gr
import glob
pipe = pipeline(model="fimster/whisper-small-sv-SE")  # change to "your-username/the-name-you-picked"
images = ["katt", "melon", "hund", "banan"]
print(glob.glob("./images/"))

def transcribe(audio):
    text = pipe(audio)["text"]
    return text

iface = gr.Interface(
    fn=transcribe, 
    inputs=gr.Audio(source="microphone", type="filepath"), 
    # image = 
    # image = gr.Image(),
    outputs="text",
    title="Whisper Small Swedish",
    description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.",
)


iface.launch()