antonbol's picture
Update app.py
e7c815d
raw
history blame
660 Bytes
from transformers import pipeline
import gradio as gr
from numpy import random
pipe = pipeline(model="fimster/whisper-small-sv-SE") # change to "your-username/the-name-you-picked"
images = ["katt", "melon", "hund", "banan"]
image = random.choice(images)
query_image = gr.Image("./images/" + image + ".jpeg")
def transcribe(audio):
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Swedish",
description="Realtime demo for Swedish speech recognition using a fine-tuned Whisper small model.",
)
iface.launch()