titanic / feature_engineering.py
antonbol's picture
removed title again lol
20f693c
raw
history blame
2.65 kB
################ Dicts with encodings ################
# cabin_dict= "Cabin": {"N": 0, "C": 1, "E": 2, "G": 3, "D":4, "A": 5, "B": 6, "F": 7, "T": 8}
cleanup_catergories = {"sex": {"female": 1, "male": 0}, "embarked": {"S": 0, "C": 1, "Q": 2}}
sex_dict = {"female": 1, "male": 0}
embarked_dict = {"S": 0, "C": 1, "Q": 2}
# Reversed
"""
title_dict = {
0: ["Mr"],
1: ["Miss"],
2: ["Mrs"],
3: ["Master"],
# Rare titles, not worth individual categorys
4: [
"Dr",
"Rev",
"Mlle",
"Major",
"Col",
"Countess",
"Capt",
"Ms",
"Sir",
"Lady",
"Nme",
"Don",
"Jonkheer",
],
}
"""
#####################################################
def feat_eng(df):
"""
Main function containg the feature engineering part
of the pipeline.
"""
import pandas as pd
import numpy as np
import hopsworks
# Load the data_frame
# df = pd.read_csv(
# "https://raw.githubusercontent.com/ID2223KTH/id2223kth.github.io/master/assignments/lab1/titanic.csv"
# )
# Drop features and NaNs
df.drop(["Ticket", "Cabin", "Fare", "PassengerId", "Name"], axis=1, inplace=True)
df = df[df["Embarked"].notna()]
# Feature engineering
# Creat a title feature
# if "Name" in df.columns:
# df["Title"] = df.Name.str.extract("([A-Za-z]+)\\.")
# df.drop("Name", axis=1, inplace=True)
# # Interpolate missing ages
# for title in df["Title"].unique():
# # This sould be optimized
# mask = (df["Title"] == title) & df["Age"].isna()
# # Get sutible candidates for age sampling
# candidates = df.loc[(df["Title"] == title) & df["Age"].notna()]
# g = candidates.groupby("Age", dropna=True)["Age"].count()
# g = g.apply(lambda x: x / g.sum())
# weights = g.to_numpy()
# ages = g.index
# df.update(df["Age"][mask].apply(lambda x: np.random.choice(ages, p=weights)))
# Cast age to int
df["Age"] = df["Age"].astype("int")
# Bin ages
# df['Age'] = pd.cut(df['Age'],[0,8,15,30,65,150])
# # Bin fare
# df['Fare'] = pd.cut(df['Fare'],[0,200,400,600,1000])
# # Bin SibSp
# pd.cut(df['SibSp'], [0,1,2,7], right=False)
# Cabin into categories based on first letter(deck of boat)
# df["Cabin"] = df["Cabin"].str.slice(0,1)
# Make a separate category of all te NANs
# df["Cabin"] = df["Cabin"].fillna("N")
# Fixes for hopsworks...
df.columns = df.columns.str.lower()
# Final encoding
df = df.replace(cleanup_catergories)
return df