added feature_eng
Browse files- feature_engineering.py +101 -0
feature_engineering.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
################ Dicts with encodings ################
|
| 3 |
+
cleanup_catergories = {"sex": {"female": 1, "male": 0}, "embarked": {"S": 0, "C": 1, "Q": 2}, "Cabin": {"N": 0, "C": 1, "E": 2, "G": 3, "D":4, "A": 5, "B": 6, "F": 7, "T": 8}}
|
| 4 |
+
|
| 5 |
+
sex_dict = {"female": 1, "male": 0}
|
| 6 |
+
embarked_dict = {"S": 0, "C": 1, "Q": 2}
|
| 7 |
+
|
| 8 |
+
# Reversed
|
| 9 |
+
"""
|
| 10 |
+
title_dict = {
|
| 11 |
+
0: ["Mr"],
|
| 12 |
+
1: ["Miss"],
|
| 13 |
+
2: ["Mrs"],
|
| 14 |
+
3: ["Master"],
|
| 15 |
+
# Rare titles, not worth individual categorys
|
| 16 |
+
4: [
|
| 17 |
+
"Dr",
|
| 18 |
+
"Rev",
|
| 19 |
+
"Mlle",
|
| 20 |
+
"Major",
|
| 21 |
+
"Col",
|
| 22 |
+
"Countess",
|
| 23 |
+
"Capt",
|
| 24 |
+
"Ms",
|
| 25 |
+
"Sir",
|
| 26 |
+
"Lady",
|
| 27 |
+
"Nme",
|
| 28 |
+
"Don",
|
| 29 |
+
"Jonkheer",
|
| 30 |
+
],
|
| 31 |
+
}
|
| 32 |
+
"""
|
| 33 |
+
#####################################################
|
| 34 |
+
|
| 35 |
+
def feat_eng(df):
|
| 36 |
+
"""
|
| 37 |
+
Main function containg the feature engineering part
|
| 38 |
+
of the pipeline.
|
| 39 |
+
"""
|
| 40 |
+
import pandas as pd
|
| 41 |
+
import numpy as np
|
| 42 |
+
import hopsworks
|
| 43 |
+
|
| 44 |
+
# Load the data_frame
|
| 45 |
+
df = pd.read_csv(
|
| 46 |
+
"https://raw.githubusercontent.com/ID2223KTH/id2223kth.github.io/master/assignments/lab1/titanic.csv"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Drop features and NaNs
|
| 50 |
+
df.drop(["Ticket", "Fare"], axis=1, inplace=True)
|
| 51 |
+
df = df[df["Embarked"].notna()]
|
| 52 |
+
|
| 53 |
+
# Feature engineering
|
| 54 |
+
# Creat a title feature
|
| 55 |
+
if "Name" in df.columns:
|
| 56 |
+
df["Title"] = df.Name.str.extract("([A-Za-z]+)\\.")
|
| 57 |
+
df.drop("Name", axis=1, inplace=True)
|
| 58 |
+
|
| 59 |
+
# Interpolate missing ages
|
| 60 |
+
for title in df["Title"].unique():
|
| 61 |
+
# This sould be optimized
|
| 62 |
+
mask = (df["Title"] == title) & df["Age"].isna()
|
| 63 |
+
|
| 64 |
+
# Get sutible candidates for age sampling
|
| 65 |
+
candidates = df.loc[(df["Title"] == title) & df["Age"].notna()]
|
| 66 |
+
|
| 67 |
+
g = candidates.groupby("Age", dropna=True)["Age"].count()
|
| 68 |
+
g = g.apply(lambda x: x / g.sum())
|
| 69 |
+
|
| 70 |
+
weights = g.to_numpy()
|
| 71 |
+
ages = g.index
|
| 72 |
+
|
| 73 |
+
df.update(df["Age"][mask].apply(lambda x: np.random.choice(ages, p=weights)))
|
| 74 |
+
|
| 75 |
+
# Cast age to int
|
| 76 |
+
df["Age"] = df["Age"].astype("int")
|
| 77 |
+
# Bin ages
|
| 78 |
+
df['Age'] = pd.cut(df['Age'],[0,8,15,30,65,150])
|
| 79 |
+
|
| 80 |
+
# Bin fare
|
| 81 |
+
df['Fare'] = pd.cut(df['Fare'],[0,200,400,600,1000])
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# Bin SibSp
|
| 85 |
+
pd.cut(df['SibSp'], [0,1,2,7], right=False)
|
| 86 |
+
|
| 87 |
+
# Cabin into categories based on first letter(deck of boat)
|
| 88 |
+
df["Cabin"] = df["Cabin"].str.slice(0,1)
|
| 89 |
+
|
| 90 |
+
# Make a separate category of all te NANs
|
| 91 |
+
df["Cabin"] = df["Cabin"].fillna("N")
|
| 92 |
+
|
| 93 |
+
# Fixes for hopsworks...
|
| 94 |
+
df.columns = df.columns.str.lower()
|
| 95 |
+
|
| 96 |
+
# Final encoding
|
| 97 |
+
df = df.replace(cleanup_catergories)
|
| 98 |
+
|
| 99 |
+
return df
|
| 100 |
+
|
| 101 |
+
|