antonbol commited on
Commit
bde0954
·
1 Parent(s): 32de183

trying diff images

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -15,8 +15,10 @@ mr = project.get_model_registry()
15
  model = mr.get_model("titanic_modal_simple_classifier", version=1)
16
  model_dir = model.download()
17
  model = joblib.load(model_dir + "/titanic_model.pkl")
18
- leo_url = "https://media.tenor.com/FghTtX3ZgbAAAAAC/drowning-leo.gif"
19
- rose_url = "https://media4.giphy.com/media/6A5zBPtbknIGY/giphy.gif?cid=ecf05e477syp5zeoheii45de76uicvgu0nuegojslz3zgodt&rid=giphy.gif&ct=g"
 
 
20
 
21
  def titanic(pclass, name, sex, age, sibsp, parch, ticket, fare, cabin, embarked):
22
  df_pre = pd.DataFrame({"PassengerId":[-1], "Pclass": [pclass], "Name": [name], "Sex": [sex], "Age": [age], "SibSp": [sibsp], "Parch": [parch], "Ticket": [ticket], "Fare": [fare], "Cabin": [cabin], "Embarked": [embarked]})
@@ -46,6 +48,6 @@ demo = gr.Interface(
46
  gr.inputs.Textbox(default="blabla", label="Cabin"),
47
  gr.inputs.Textbox(default="blabla", label="Embarked: [S, C, Q]")
48
  ],
49
- outputs=gr.Video())
50
 
51
  demo.launch()
 
15
  model = mr.get_model("titanic_modal_simple_classifier", version=1)
16
  model_dir = model.download()
17
  model = joblib.load(model_dir + "/titanic_model.pkl")
18
+ leo_url = ""
19
+ rose_url = "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSGoi8okN1Fw6tYE7k-0H-wnMabl1e3NBNPpQ&usqp=CAU"
20
+ # leo_url = "https://media.tenor.com/FghTtX3ZgbAAAAAC/drowning-leo.gif"
21
+ # rose_url = "https://media4.giphy.com/media/6A5zBPtbknIGY/giphy.gif?cid=ecf05e477syp5zeoheii45de76uicvgu0nuegojslz3zgodt&rid=giphy.gif&ct=g"
22
 
23
  def titanic(pclass, name, sex, age, sibsp, parch, ticket, fare, cabin, embarked):
24
  df_pre = pd.DataFrame({"PassengerId":[-1], "Pclass": [pclass], "Name": [name], "Sex": [sex], "Age": [age], "SibSp": [sibsp], "Parch": [parch], "Ticket": [ticket], "Fare": [fare], "Cabin": [cabin], "Embarked": [embarked]})
 
48
  gr.inputs.Textbox(default="blabla", label="Cabin"),
49
  gr.inputs.Textbox(default="blabla", label="Embarked: [S, C, Q]")
50
  ],
51
+ outputs=gr.Image(type="pil"))
52
 
53
  demo.launch()