File size: 6,846 Bytes
af564b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os

import librosa
import numpy as np
import soundfile as sf


def crop_center(h1, h2):
    h1_shape = h1.size()
    h2_shape = h2.size()

    if h1_shape[3] == h2_shape[3]:
        return h1
    elif h1_shape[3] < h2_shape[3]:
        raise ValueError('h1_shape[3] must be greater than h2_shape[3]')

    # s_freq = (h2_shape[2] - h1_shape[2]) // 2
    # e_freq = s_freq + h1_shape[2]
    s_time = (h1_shape[3] - h2_shape[3]) // 2
    e_time = s_time + h2_shape[3]
    h1 = h1[:, :, :, s_time:e_time]

    return h1


def wave_to_spectrogram(wave, hop_length, n_fft):
    wave_left = np.asfortranarray(wave[0])
    wave_right = np.asfortranarray(wave[1])

    spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
    spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
    spec = np.asfortranarray([spec_left, spec_right])

    return spec


def spectrogram_to_image(spec, mode='magnitude'):
    if mode == 'magnitude':
        if np.iscomplexobj(spec):
            y = np.abs(spec)
        else:
            y = spec
        y = np.log10(y ** 2 + 1e-8)
    elif mode == 'phase':
        if np.iscomplexobj(spec):
            y = np.angle(spec)
        else:
            y = spec

    y -= y.min()
    y *= 255 / y.max()
    img = np.uint8(y)

    if y.ndim == 3:
        img = img.transpose(1, 2, 0)
        img = np.concatenate([
            np.max(img, axis=2, keepdims=True), img
        ], axis=2)

    return img


def aggressively_remove_vocal(X, y, weight):
    X_mag = np.abs(X)
    y_mag = np.abs(y)
    # v_mag = np.abs(X_mag - y_mag)
    v_mag = X_mag - y_mag
    v_mag *= v_mag > y_mag

    y_mag = np.clip(y_mag - v_mag * weight, 0, np.inf)

    return y_mag * np.exp(1.j * np.angle(y))


def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32):
    if min_range < fade_size * 2:
        raise ValueError('min_range must be >= fade_size * 2')

    idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
    start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
    end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
    artifact_idx = np.where(end_idx - start_idx > min_range)[0]
    weight = np.zeros_like(y_mask)
    if len(artifact_idx) > 0:
        start_idx = start_idx[artifact_idx]
        end_idx = end_idx[artifact_idx]
        old_e = None
        for s, e in zip(start_idx, end_idx):
            if old_e is not None and s - old_e < fade_size:
                s = old_e - fade_size * 2

            if s != 0:
                weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
            else:
                s -= fade_size

            if e != y_mask.shape[2]:
                weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
            else:
                e += fade_size

            weight[:, :, s + fade_size:e - fade_size] = 1
            old_e = e

    v_mask = 1 - y_mask
    y_mask += weight * v_mask

    return y_mask


def align_wave_head_and_tail(a, b, sr):
    a, _ = librosa.effects.trim(a)
    b, _ = librosa.effects.trim(b)

    a_mono = a[:, :sr * 4].sum(axis=0)
    b_mono = b[:, :sr * 4].sum(axis=0)

    a_mono -= a_mono.mean()
    b_mono -= b_mono.mean()

    offset = len(a_mono) - 1
    delay = np.argmax(np.correlate(a_mono, b_mono, 'full')) - offset

    if delay > 0:
        a = a[:, delay:]
    else:
        b = b[:, np.abs(delay):]

    if a.shape[1] < b.shape[1]:
        b = b[:, :a.shape[1]]
    else:
        a = a[:, :b.shape[1]]

    return a, b


def cache_or_load(mix_path, inst_path, sr, hop_length, n_fft):
    mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
    inst_basename = os.path.splitext(os.path.basename(inst_path))[0]

    cache_dir = 'sr{}_hl{}_nf{}'.format(sr, hop_length, n_fft)
    mix_cache_dir = os.path.join(os.path.dirname(mix_path), cache_dir)
    inst_cache_dir = os.path.join(os.path.dirname(inst_path), cache_dir)
    os.makedirs(mix_cache_dir, exist_ok=True)
    os.makedirs(inst_cache_dir, exist_ok=True)

    mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy')
    inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy')

    if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
        X = np.load(mix_cache_path)
        y = np.load(inst_cache_path)
    else:
        X, _ = librosa.load(
            mix_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
        y, _ = librosa.load(
            inst_path, sr, False, dtype=np.float32, res_type='kaiser_fast')

        X, y = align_wave_head_and_tail(X, y, sr)

        X = wave_to_spectrogram(X, hop_length, n_fft)
        y = wave_to_spectrogram(y, hop_length, n_fft)

        np.save(mix_cache_path, X)
        np.save(inst_cache_path, y)

    return X, y, mix_cache_path, inst_cache_path


def spectrogram_to_wave(spec, hop_length=1024):
    if spec.ndim == 2:
        wave = librosa.istft(spec, hop_length=hop_length)
    elif spec.ndim == 3:
        spec_left = np.asfortranarray(spec[0])
        spec_right = np.asfortranarray(spec[1])

        wave_left = librosa.istft(spec_left, hop_length=hop_length)
        wave_right = librosa.istft(spec_right, hop_length=hop_length)
        wave = np.asfortranarray([wave_left, wave_right])

    return wave


if __name__ == "__main__":
    import cv2
    import sys

    bins = 2048 // 2 + 1
    freq_to_bin = 2 * bins / 44100
    unstable_bins = int(200 * freq_to_bin)
    stable_bins = int(22050 * freq_to_bin)
    reduction_weight = np.concatenate([
        np.linspace(0, 1, unstable_bins, dtype=np.float32)[:, None],
        np.linspace(1, 0, stable_bins - unstable_bins, dtype=np.float32)[:, None],
        np.zeros((bins - stable_bins, 1))
    ], axis=0) * 0.2

    X, _ = librosa.load(
        sys.argv[1], 44100, False, dtype=np.float32, res_type='kaiser_fast')
    y, _ = librosa.load(
        sys.argv[2], 44100, False, dtype=np.float32, res_type='kaiser_fast')

    X, y = align_wave_head_and_tail(X, y, 44100)
    X_spec = wave_to_spectrogram(X, 1024, 2048)
    y_spec = wave_to_spectrogram(y, 1024, 2048)

    X_mag = np.abs(X_spec)
    y_mag = np.abs(y_spec)
    # v_mag = np.abs(X_mag - y_mag)
    v_mag = X_mag - y_mag
    v_mag *= v_mag > y_mag

    # y_mag = np.clip(y_mag - v_mag * reduction_weight, 0, np.inf)
    y_spec = y_mag * np.exp(1j * np.angle(y_spec))
    v_spec = v_mag * np.exp(1j * np.angle(X_spec))

    X_image = spectrogram_to_image(X_mag)
    y_image = spectrogram_to_image(y_mag)
    v_image = spectrogram_to_image(v_mag)

    cv2.imwrite('test_X.jpg', X_image)
    cv2.imwrite('test_y.jpg', y_image)
    cv2.imwrite('test_v.jpg', v_image)

    sf.write('test_X.wav', spectrogram_to_wave(X_spec).T, 44100)
    sf.write('test_y.wav', spectrogram_to_wave(y_spec).T, 44100)
    sf.write('test_v.wav', spectrogram_to_wave(v_spec).T, 44100)