Spaces:
Runtime error
Runtime error
File size: 6,846 Bytes
af564b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import os
import librosa
import numpy as np
import soundfile as sf
def crop_center(h1, h2):
h1_shape = h1.size()
h2_shape = h2.size()
if h1_shape[3] == h2_shape[3]:
return h1
elif h1_shape[3] < h2_shape[3]:
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
# e_freq = s_freq + h1_shape[2]
s_time = (h1_shape[3] - h2_shape[3]) // 2
e_time = s_time + h2_shape[3]
h1 = h1[:, :, :, s_time:e_time]
return h1
def wave_to_spectrogram(wave, hop_length, n_fft):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def spectrogram_to_image(spec, mode='magnitude'):
if mode == 'magnitude':
if np.iscomplexobj(spec):
y = np.abs(spec)
else:
y = spec
y = np.log10(y ** 2 + 1e-8)
elif mode == 'phase':
if np.iscomplexobj(spec):
y = np.angle(spec)
else:
y = spec
y -= y.min()
y *= 255 / y.max()
img = np.uint8(y)
if y.ndim == 3:
img = img.transpose(1, 2, 0)
img = np.concatenate([
np.max(img, axis=2, keepdims=True), img
], axis=2)
return img
def aggressively_remove_vocal(X, y, weight):
X_mag = np.abs(X)
y_mag = np.abs(y)
# v_mag = np.abs(X_mag - y_mag)
v_mag = X_mag - y_mag
v_mag *= v_mag > y_mag
y_mag = np.clip(y_mag - v_mag * weight, 0, np.inf)
return y_mag * np.exp(1.j * np.angle(y))
def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32):
if min_range < fade_size * 2:
raise ValueError('min_range must be >= fade_size * 2')
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
weight = np.zeros_like(y_mask)
if len(artifact_idx) > 0:
start_idx = start_idx[artifact_idx]
end_idx = end_idx[artifact_idx]
old_e = None
for s, e in zip(start_idx, end_idx):
if old_e is not None and s - old_e < fade_size:
s = old_e - fade_size * 2
if s != 0:
weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
else:
s -= fade_size
if e != y_mask.shape[2]:
weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
else:
e += fade_size
weight[:, :, s + fade_size:e - fade_size] = 1
old_e = e
v_mask = 1 - y_mask
y_mask += weight * v_mask
return y_mask
def align_wave_head_and_tail(a, b, sr):
a, _ = librosa.effects.trim(a)
b, _ = librosa.effects.trim(b)
a_mono = a[:, :sr * 4].sum(axis=0)
b_mono = b[:, :sr * 4].sum(axis=0)
a_mono -= a_mono.mean()
b_mono -= b_mono.mean()
offset = len(a_mono) - 1
delay = np.argmax(np.correlate(a_mono, b_mono, 'full')) - offset
if delay > 0:
a = a[:, delay:]
else:
b = b[:, np.abs(delay):]
if a.shape[1] < b.shape[1]:
b = b[:, :a.shape[1]]
else:
a = a[:, :b.shape[1]]
return a, b
def cache_or_load(mix_path, inst_path, sr, hop_length, n_fft):
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
cache_dir = 'sr{}_hl{}_nf{}'.format(sr, hop_length, n_fft)
mix_cache_dir = os.path.join(os.path.dirname(mix_path), cache_dir)
inst_cache_dir = os.path.join(os.path.dirname(inst_path), cache_dir)
os.makedirs(mix_cache_dir, exist_ok=True)
os.makedirs(inst_cache_dir, exist_ok=True)
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy')
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy')
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
X = np.load(mix_cache_path)
y = np.load(inst_cache_path)
else:
X, _ = librosa.load(
mix_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
y, _ = librosa.load(
inst_path, sr, False, dtype=np.float32, res_type='kaiser_fast')
X, y = align_wave_head_and_tail(X, y, sr)
X = wave_to_spectrogram(X, hop_length, n_fft)
y = wave_to_spectrogram(y, hop_length, n_fft)
np.save(mix_cache_path, X)
np.save(inst_cache_path, y)
return X, y, mix_cache_path, inst_cache_path
def spectrogram_to_wave(spec, hop_length=1024):
if spec.ndim == 2:
wave = librosa.istft(spec, hop_length=hop_length)
elif spec.ndim == 3:
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
wave = np.asfortranarray([wave_left, wave_right])
return wave
if __name__ == "__main__":
import cv2
import sys
bins = 2048 // 2 + 1
freq_to_bin = 2 * bins / 44100
unstable_bins = int(200 * freq_to_bin)
stable_bins = int(22050 * freq_to_bin)
reduction_weight = np.concatenate([
np.linspace(0, 1, unstable_bins, dtype=np.float32)[:, None],
np.linspace(1, 0, stable_bins - unstable_bins, dtype=np.float32)[:, None],
np.zeros((bins - stable_bins, 1))
], axis=0) * 0.2
X, _ = librosa.load(
sys.argv[1], 44100, False, dtype=np.float32, res_type='kaiser_fast')
y, _ = librosa.load(
sys.argv[2], 44100, False, dtype=np.float32, res_type='kaiser_fast')
X, y = align_wave_head_and_tail(X, y, 44100)
X_spec = wave_to_spectrogram(X, 1024, 2048)
y_spec = wave_to_spectrogram(y, 1024, 2048)
X_mag = np.abs(X_spec)
y_mag = np.abs(y_spec)
# v_mag = np.abs(X_mag - y_mag)
v_mag = X_mag - y_mag
v_mag *= v_mag > y_mag
# y_mag = np.clip(y_mag - v_mag * reduction_weight, 0, np.inf)
y_spec = y_mag * np.exp(1j * np.angle(y_spec))
v_spec = v_mag * np.exp(1j * np.angle(X_spec))
X_image = spectrogram_to_image(X_mag)
y_image = spectrogram_to_image(y_mag)
v_image = spectrogram_to_image(v_mag)
cv2.imwrite('test_X.jpg', X_image)
cv2.imwrite('test_y.jpg', y_image)
cv2.imwrite('test_v.jpg', v_image)
sf.write('test_X.wav', spectrogram_to_wave(X_spec).T, 44100)
sf.write('test_y.wav', spectrogram_to_wave(y_spec).T, 44100)
sf.write('test_v.wav', spectrogram_to_wave(v_spec).T, 44100)
|