Voice-Clone-GPU / TTS /utils /generic_utils.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
8.18 kB
# -*- coding: utf-8 -*-
import datetime
import importlib
import logging
import os
import re
import subprocess
import sys
from pathlib import Path
from typing import Dict
import fsspec
import torch
def to_cuda(x: torch.Tensor) -> torch.Tensor:
if x is None:
return None
if torch.is_tensor(x):
x = x.contiguous()
if torch.cuda.is_available():
x = x.cuda(non_blocking=True)
return x
def get_cuda():
use_cuda = torch.cuda.is_available()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
return use_cuda, device
def get_git_branch():
try:
out = subprocess.check_output(["git", "branch"]).decode("utf8")
current = next(line for line in out.split("\n") if line.startswith("*"))
current.replace("* ", "")
except subprocess.CalledProcessError:
current = "inside_docker"
except FileNotFoundError:
current = "unknown"
except StopIteration:
current = "unknown"
return current
def get_commit_hash():
"""https://stackoverflow.com/questions/14989858/get-the-current-git-hash-in-a-python-script"""
# try:
# subprocess.check_output(['git', 'diff-index', '--quiet',
# 'HEAD']) # Verify client is clean
# except:
# raise RuntimeError(
# " !! Commit before training to get the commit hash.")
try:
commit = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode().strip()
# Not copying .git folder into docker container
except (subprocess.CalledProcessError, FileNotFoundError):
commit = "0000000"
return commit
def get_experiment_folder_path(root_path, model_name):
"""Get an experiment folder path with the current date and time"""
date_str = datetime.datetime.now().strftime("%B-%d-%Y_%I+%M%p")
commit_hash = get_commit_hash()
output_folder = os.path.join(root_path, model_name + "-" + date_str + "-" + commit_hash)
return output_folder
def remove_experiment_folder(experiment_path):
"""Check folder if there is a checkpoint, otherwise remove the folder"""
fs = fsspec.get_mapper(experiment_path).fs
checkpoint_files = fs.glob(experiment_path + "/*.pth")
if not checkpoint_files:
if fs.exists(experiment_path):
fs.rm(experiment_path, recursive=True)
print(" ! Run is removed from {}".format(experiment_path))
else:
print(" ! Run is kept in {}".format(experiment_path))
def count_parameters(model):
r"""Count number of trainable parameters in a network"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def to_camel(text):
text = text.capitalize()
text = re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text)
text = text.replace("Tts", "TTS")
text = text.replace("vc", "VC")
return text
def find_module(module_path: str, module_name: str) -> object:
module_name = module_name.lower()
module = importlib.import_module(module_path + "." + module_name)
class_name = to_camel(module_name)
return getattr(module, class_name)
def import_class(module_path: str) -> object:
"""Import a class from a module path.
Args:
module_path (str): The module path of the class.
Returns:
object: The imported class.
"""
class_name = module_path.split(".")[-1]
module_path = ".".join(module_path.split(".")[:-1])
module = importlib.import_module(module_path)
return getattr(module, class_name)
def get_import_path(obj: object) -> str:
"""Get the import path of a class.
Args:
obj (object): The class object.
Returns:
str: The import path of the class.
"""
return ".".join([type(obj).__module__, type(obj).__name__])
def get_user_data_dir(appname):
TTS_HOME = os.environ.get("TTS_HOME")
XDG_DATA_HOME = os.environ.get("XDG_DATA_HOME")
if TTS_HOME is not None:
ans = Path(TTS_HOME).expanduser().resolve(strict=False)
elif XDG_DATA_HOME is not None:
ans = Path(XDG_DATA_HOME).expanduser().resolve(strict=False)
elif sys.platform == "win32":
import winreg # pylint: disable=import-outside-toplevel
key = winreg.OpenKey(
winreg.HKEY_CURRENT_USER, r"Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders"
)
dir_, _ = winreg.QueryValueEx(key, "Local AppData")
ans = Path(dir_).resolve(strict=False)
elif sys.platform == "darwin":
ans = Path("~/Library/Application Support/").expanduser()
else:
ans = Path.home().joinpath(".local/share")
return ans.joinpath(appname)
def set_init_dict(model_dict, checkpoint_state, c):
# Partial initialization: if there is a mismatch with new and old layer, it is skipped.
for k, v in checkpoint_state.items():
if k not in model_dict:
print(" | > Layer missing in the model definition: {}".format(k))
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict}
# 2. filter out different size layers
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()}
# 3. skip reinit layers
if c.has("reinit_layers") and c.reinit_layers is not None:
for reinit_layer_name in c.reinit_layers:
pretrained_dict = {k: v for k, v in pretrained_dict.items() if reinit_layer_name not in k}
# 4. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict)))
return model_dict
def format_aux_input(def_args: Dict, kwargs: Dict) -> Dict:
"""Format kwargs to hande auxilary inputs to models.
Args:
def_args (Dict): A dictionary of argument names and their default values if not defined in `kwargs`.
kwargs (Dict): A `dict` or `kwargs` that includes auxilary inputs to the model.
Returns:
Dict: arguments with formatted auxilary inputs.
"""
kwargs = kwargs.copy()
for name in def_args:
if name not in kwargs or kwargs[name] is None:
kwargs[name] = def_args[name]
return kwargs
class KeepAverage:
def __init__(self):
self.avg_values = {}
self.iters = {}
def __getitem__(self, key):
return self.avg_values[key]
def items(self):
return self.avg_values.items()
def add_value(self, name, init_val=0, init_iter=0):
self.avg_values[name] = init_val
self.iters[name] = init_iter
def update_value(self, name, value, weighted_avg=False):
if name not in self.avg_values:
# add value if not exist before
self.add_value(name, init_val=value)
else:
# else update existing value
if weighted_avg:
self.avg_values[name] = 0.99 * self.avg_values[name] + 0.01 * value
self.iters[name] += 1
else:
self.avg_values[name] = self.avg_values[name] * self.iters[name] + value
self.iters[name] += 1
self.avg_values[name] /= self.iters[name]
def add_values(self, name_dict):
for key, value in name_dict.items():
self.add_value(key, init_val=value)
def update_values(self, value_dict):
for key, value in value_dict.items():
self.update_value(key, value)
def get_timestamp():
return datetime.now().strftime("%y%m%d-%H%M%S")
def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False):
lg = logging.getLogger(logger_name)
formatter = logging.Formatter("%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s", datefmt="%y-%m-%d %H:%M:%S")
lg.setLevel(level)
if tofile:
log_file = os.path.join(root, phase + "_{}.log".format(get_timestamp()))
fh = logging.FileHandler(log_file, mode="w")
fh.setFormatter(formatter)
lg.addHandler(fh)
if screen:
sh = logging.StreamHandler()
sh.setFormatter(formatter)
lg.addHandler(sh)