from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation import gradio as gr from PIL import Image import matplotlib.pyplot as plt import torch import cv2 import os os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt") import paddlehub as hub import gradio as gr import torch from PIL import Image, ImageOps import numpy as np import imageio os.mkdir("data") os.rename("best.ckpt", "models/best.ckpt") os.mkdir("dataout") # Load CLIPSeg model processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") clipseg_model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") # Load LAMA model model = hub.Module(name='U2Net') def process_image(image, prompt): # Generate mask with CLIPSeg inputs = processor(text=prompt, images=image, padding="max_length", return_tensors="pt") with torch.no_grad(): outputs = clipseg_model(**inputs) preds = outputs.logits plt.imsave("mask.png", torch.sigmoid(preds)) mask_image = Image.open("mask.png").convert("RGB") image = np.array(image) imageio.imwrite("./data/data.png", image) # Convert mask to grayscale format mask_image = mask_image.resize((image.shape[1], image.shape[0])) mask_image = cv2.cvtColor(np.array(mask_image), cv2.COLOR_RGB2GRAY) mask_image = cv2.threshold(mask_image, 70, 255, cv2.THRESH_BINARY)[1] # Perform inpainting with LAMA # input_dict = {"image": image, "mask": mask_image} # imageio.imwrite("./data/data_mask.png", input_dict["mask"]) imageio.imwrite("./data/data_mask.png", mask_image) os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu') inpainted_image = "./dataout/data_mask.png" # inpainted_image = Image.new('RGB', (image.shape[1], image.shape[0]), (0, 0, 0)) # inpainted_image = cv2.cvtColor(inpainted_image, cv2.COLOR_BGR2RGB) # inpainted_image = Image.fromarray(inpainted_image) return mask_image, inpainted_image interface = gr.Interface(fn=process_image, inputs=[gr.Image(type="pil"), gr.Textbox(label="Please describe what you want to identify")], outputs=[gr.Image(type="pil"), gr.Image(type="filepath")], title="Interactive demo: zero-shot image segmentation with CLIPSeg and inpainting with LAMA", description="Demo for using CLIPSeg and LAMA to perform zero- and one-shot image segmentation and inpainting. To use it, simply upload an image and add a text to mask (identify in the image), or use one of the examples below and click 'submit'. Results will show up in a few seconds.") interface.launch(debug=True)