Spaces:
Paused
Paused
File size: 5,843 Bytes
8a32844 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import os
import os.path as osp
import cv2
import time
import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(CODE_SPACE)
import argparse
import mmcv
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
try:
from mmcv.utils import Config, DictAction
except:
from mmengine import Config, DictAction
from datetime import timedelta
import random
import numpy as np
from mono.utils.logger import setup_logger
import glob
from mono.utils.comm import init_env
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.utils.running import load_ckpt
from mono.utils.do_test import do_scalecano_test_with_custom_data
from mono.utils.mldb import load_data_info, reset_ckpt_path
from mono.utils.custom_data import load_from_annos, load_data
def parse_args():
parser = argparse.ArgumentParser(description='Train a segmentor')
parser.add_argument('config', help='train config file path')
parser.add_argument('--show-dir', help='the dir to save logs and visualization results')
parser.add_argument('--load-from', help='the checkpoint file to load weights from')
parser.add_argument('--node_rank', type=int, default=0)
parser.add_argument('--nnodes', type=int, default=1, help='number of nodes')
parser.add_argument('--options', nargs='+', action=DictAction, help='custom options')
parser.add_argument('--launcher', choices=['None', 'pytorch', 'slurm', 'mpi', 'ror'], default='slurm', help='job launcher')
parser.add_argument('--test_data_path', default='None', type=str, help='the path of test data')
args = parser.parse_args()
return args
def main(args):
os.chdir(CODE_SPACE)
cfg = Config.fromfile(args.config)
if args.options is not None:
cfg.merge_from_dict(args.options)
# show_dir is determined in this priority: CLI > segment in file > filename
if args.show_dir is not None:
# update configs according to CLI args if args.show_dir is not None
cfg.show_dir = args.show_dir
else:
# use condig filename + timestamp as default show_dir if args.show_dir is None
cfg.show_dir = osp.join('./show_dirs',
osp.splitext(osp.basename(args.config))[0],
args.timestamp)
# ckpt path
if args.load_from is None:
raise RuntimeError('Please set model path!')
cfg.load_from = args.load_from
# load data info
data_info = {}
load_data_info('data_info', data_info=data_info)
cfg.mldb_info = data_info
# update check point info
reset_ckpt_path(cfg.model, data_info)
# create show dir
os.makedirs(osp.abspath(cfg.show_dir), exist_ok=True)
# init the logger before other steps
cfg.log_file = osp.join(cfg.show_dir, f'{args.timestamp}.log')
logger = setup_logger(cfg.log_file)
# log some basic info
logger.info(f'Config:\n{cfg.pretty_text}')
# init distributed env dirst, since logger depends on the dist info
if args.launcher == 'None':
cfg.distributed = False
else:
cfg.distributed = True
init_env(args.launcher, cfg)
logger.info(f'Distributed training: {cfg.distributed}')
# dump config
cfg.dump(osp.join(cfg.show_dir, osp.basename(args.config)))
test_data_path = args.test_data_path
if not os.path.isabs(test_data_path):
test_data_path = osp.join(CODE_SPACE, test_data_path)
if 'json' in test_data_path:
test_data = load_from_annos(test_data_path)
else:
test_data = load_data(args.test_data_path)
if not cfg.distributed:
main_worker(0, cfg, args.launcher, test_data)
else:
# distributed training
if args.launcher == 'ror':
local_rank = cfg.dist_params.local_rank
main_worker(local_rank, cfg, args.launcher, test_data)
else:
mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher, test_data))
def main_worker(local_rank: int, cfg: dict, launcher: str, test_data: list):
if cfg.distributed:
cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank
cfg.dist_params.local_rank = local_rank
if launcher == 'ror':
init_torch_process_group(use_hvd=False)
else:
torch.cuda.set_device(local_rank)
default_timeout = timedelta(minutes=30)
dist.init_process_group(
backend=cfg.dist_params.backend,
init_method=cfg.dist_params.dist_url,
world_size=cfg.dist_params.world_size,
rank=cfg.dist_params.global_rank,
timeout=default_timeout)
logger = setup_logger(cfg.log_file)
# build model
model = get_configured_monodepth_model(cfg, )
# config distributed training
if cfg.distributed:
model = torch.nn.parallel.DistributedDataParallel(model.cuda(),
device_ids=[local_rank],
output_device=local_rank,
find_unused_parameters=True)
else:
model = torch.nn.DataParallel(model).cuda()
# load ckpt
model, _, _, _ = load_ckpt(cfg.load_from, model, strict_match=False)
model.eval()
do_scalecano_test_with_custom_data(
model,
cfg,
test_data,
logger,
cfg.distributed,
local_rank
)
if __name__ == '__main__':
args = parse_args()
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
args.timestamp = timestamp
main(args) |