File size: 17,477 Bytes
8a32844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
import collections
import cv2
import math
import numpy as np
import numbers
import random
import torch

import matplotlib
import matplotlib.cm


"""
Provides a set of Pytorch transforms that use OpenCV instead of PIL (Pytorch default)
for image manipulation.
"""

class Compose(object):
    # Composes transforms: transforms.Compose([transforms.RandScale([0.5, 2.0]), transforms.ToTensor()])
    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
        for t in self.transforms:
            images, labels, intrinsics, cam_models, other_labels, transform_paras = t(images, labels, intrinsics, cam_models, other_labels, transform_paras)
        return images, labels, intrinsics, cam_models, other_labels, transform_paras


class ToTensor(object):
    # Converts numpy.ndarray (H x W x C) to a torch.FloatTensor of shape (C x H x W).
    def __init__(self,  **kwargs):
        return
    def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
        if not isinstance(images, list) or not isinstance(labels, list) or not isinstance(intrinsics, list):
            raise (RuntimeError("transform.ToTensor() only handle inputs/labels/intrinsics lists."))
        if len(images) != len(intrinsics):
            raise (RuntimeError("Numbers of images and intrinsics are not matched."))
        if not isinstance(images[0], np.ndarray) or not isinstance(labels[0], np.ndarray):
            raise (RuntimeError("transform.ToTensor() only handle np.ndarray for the input and label."
                                "[eg: data readed by cv2.imread()].\n"))
        if  not isinstance(intrinsics[0], list):
            raise (RuntimeError("transform.ToTensor() only handle list for the camera intrinsics"))

        if len(images[0].shape) > 3 or len(images[0].shape) < 2:
            raise (RuntimeError("transform.ToTensor() only handle image(np.ndarray) with 3 dims or 2 dims.\n"))
        if len(labels[0].shape) > 3 or len(labels[0].shape) < 2:
            raise (RuntimeError("transform.ToTensor() only handle label(np.ndarray) with 3 dims or 2 dims.\n"))

        if len(intrinsics[0]) >4 or len(intrinsics[0]) < 3:
            raise (RuntimeError("transform.ToTensor() only handle intrinsic(list) with 3 sizes or 4 sizes.\n"))
        
        for i, img in enumerate(images):
            if len(img.shape) == 2:
                img = np.expand_dims(img, axis=2)
            images[i] = torch.from_numpy(img.transpose((2, 0, 1))).float()
        for i, lab in enumerate(labels):
            if len(lab.shape) == 2:
                lab = np.expand_dims(lab, axis=0)
            labels[i] = torch.from_numpy(lab).float()
        for i, intrinsic in enumerate(intrinsics):
            if len(intrinsic) == 3:
                intrinsic = [intrinsic[0],] + intrinsic
            intrinsics[i] = torch.tensor(intrinsic, dtype=torch.float)
        if cam_models is not None:
            for i, cam_model in enumerate(cam_models):
                cam_models[i] = torch.from_numpy(cam_model.transpose((2, 0, 1))).float() if cam_model is not None else None
        if other_labels is not None:
            for i, lab in enumerate(other_labels):
                if len(lab.shape) == 2:
                    lab = np.expand_dims(lab, axis=0)
                other_labels[i] = torch.from_numpy(lab).float()
        return images, labels, intrinsics, cam_models, other_labels, transform_paras


class Normalize(object):
    # Normalize tensor with mean and standard deviation along channel: channel = (channel - mean) / std
    def __init__(self, mean, std=None, **kwargs):
        if std is None:
            assert len(mean) > 0
        else:
            assert len(mean) == len(std)
        self.mean = torch.tensor(mean).float()[:, None, None]
        self.std = torch.tensor(std).float()[:, None, None] if std is not None \
            else torch.tensor([1.0, 1.0, 1.0]).float()[:, None, None]

    def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
        # if self.std is None:
        #     # for t, m in zip(image, self.mean):
        #     #     t.sub(m)
        #     image = image - self.mean
        #     if ref_images is not None:
        #         for i, ref_i in enumerate(ref_images):
        #             ref_images[i] =  ref_i - self.mean
        # else:
        #     # for t, m, s in zip(image, self.mean, self.std):
        #     #     t.sub(m).div(s)
        #     image = (image - self.mean) / self.std
        #     if ref_images is not None:
        #         for i, ref_i in enumerate(ref_images):
        #             ref_images[i] =  (ref_i - self.mean) / self.std
        for i, img in enumerate(images):
            img = torch.div((img - self.mean), self.std)
            images[i] = img
        return images, labels, intrinsics, cam_models, other_labels, transform_paras


class LableScaleCanonical(object):
    """
    To solve the ambiguity observation for the mono branch, i.e. different focal length (object size) with the same depth, cameras are
    mapped to a canonical space. To mimic this, we set the focal length to a canonical one and scale the depth value. NOTE: resize the image based on the ratio can also solve
    Args:
        images: list of RGB images.
        labels: list of depth/disparity labels.
        other labels: other labels, such as instance segmentations, semantic segmentations...
    """
    def __init__(self, **kwargs):
        self.canonical_focal = kwargs['focal_length']
    
    def _get_scale_ratio(self, intrinsic):
        target_focal_x = intrinsic[0]
        label_scale_ratio = self.canonical_focal / target_focal_x
        pose_scale_ratio = 1.0
        return label_scale_ratio, pose_scale_ratio
    
    def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
        assert len(images[0].shape) == 3 and len(labels[0].shape) == 2
        assert labels[0].dtype == np.float32
        
        label_scale_ratio = None
        pose_scale_ratio = None

        for i in range(len(intrinsics)):
            img_i = images[i]
            label_i = labels[i] if i < len(labels) else None
            intrinsic_i = intrinsics[i].copy()
            cam_model_i = cam_models[i] if cam_models is not None and i < len(cam_models) else None

            label_scale_ratio, pose_scale_ratio = self._get_scale_ratio(intrinsic_i)

            # adjust the focal length, map the current camera to the canonical space
            intrinsics[i] = [intrinsic_i[0] * label_scale_ratio, intrinsic_i[1] * label_scale_ratio, intrinsic_i[2], intrinsic_i[3]]

            # scale the label to the canonical space
            if label_i is not None:
                labels[i] = label_i * label_scale_ratio
            
            if cam_model_i is not None:
                # As the focal length is adjusted (canonical focal length), the camera model should be re-built
                ori_h, ori_w, _ = img_i.shape
                cam_models[i] = build_camera_model(ori_h, ori_w, intrinsics[i])
            

        if transform_paras is not None:
            transform_paras.update(label_scale_factor=label_scale_ratio, focal_scale_factor=label_scale_ratio)
        
        return images, labels, intrinsics, cam_models, other_labels, transform_paras


class ResizeKeepRatio(object):
    """
    Resize and pad to a given size. Hold the aspect ratio.
    This resizing assumes that the camera model remains unchanged.
    Args:
        resize_size: predefined output size.
    """
    def __init__(self, resize_size, padding=None, ignore_label=-1, **kwargs):
        if isinstance(resize_size, int):
            self.resize_h = resize_size
            self.resize_w = resize_size
        elif isinstance(resize_size, collections.Iterable) and len(resize_size) == 2 \
                and isinstance(resize_size[0], int) and isinstance(resize_size[1], int) \
                and resize_size[0] > 0 and resize_size[1] > 0:
            self.resize_h = resize_size[0]
            self.resize_w = resize_size[1]
        else:
            raise (RuntimeError("crop size error.\n"))
        if padding is None:
            self.padding = padding
        elif isinstance(padding, list):
            if all(isinstance(i, numbers.Number) for i in padding):
                self.padding = padding
            else:
                raise (RuntimeError("padding in Crop() should be a number list\n"))
            if len(padding) != 3:
                raise (RuntimeError("padding channel is not equal with 3\n"))
        else:
            raise (RuntimeError("padding in Crop() should be a number list\n"))
        if isinstance(ignore_label, int):
            self.ignore_label = ignore_label
        else:
            raise (RuntimeError("ignore_label should be an integer number\n"))
        # self.crop_size = kwargs['crop_size']
        self.canonical_focal = kwargs['focal_length']
        
    def main_data_transform(self, image, label, intrinsic, cam_model, resize_ratio, padding, to_scale_ratio):
        """
        Resize data first and then do the padding.
        'label' will be scaled.
        """
        h, w, _ = image.shape
        reshape_h = int(resize_ratio * h)
        reshape_w = int(resize_ratio * w)

        pad_h, pad_w, pad_h_half, pad_w_half = padding
        
        # resize
        image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
        # padding
        image = cv2.copyMakeBorder(
            image, 
            pad_h_half, 
            pad_h - pad_h_half, 
            pad_w_half, 
            pad_w - pad_w_half, 
            cv2.BORDER_CONSTANT, 
            value=self.padding)

        if label is not None:
            # label = cv2.resize(label, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
            label = resize_depth_preserve(label, (reshape_h, reshape_w))
            label = cv2.copyMakeBorder(
                label, 
                pad_h_half, 
                pad_h - pad_h_half, 
                pad_w_half, 
                pad_w - pad_w_half, 
                cv2.BORDER_CONSTANT, 
                value=self.ignore_label)
            # scale the label
            label = label / to_scale_ratio
        
        # Resize, adjust principle point
        if intrinsic is not None:
            intrinsic[0] = intrinsic[0] * resize_ratio / to_scale_ratio
            intrinsic[1] = intrinsic[1] * resize_ratio / to_scale_ratio
            intrinsic[2] = intrinsic[2] * resize_ratio
            intrinsic[3] = intrinsic[3] * resize_ratio

        if cam_model is not None:
            #cam_model = cv2.resize(cam_model, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
            cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
            cam_model = cv2.copyMakeBorder(
                cam_model, 
                pad_h_half, 
                pad_h - pad_h_half, 
                pad_w_half, 
                pad_w - pad_w_half, 
                cv2.BORDER_CONSTANT, 
                value=self.ignore_label)

        # Pad, adjust the principle point
        if intrinsic is not None:
            intrinsic[2] = intrinsic[2] + pad_w_half
            intrinsic[3] = intrinsic[3] + pad_h_half
        return image, label, intrinsic, cam_model

    def get_label_scale_factor(self, image, intrinsic, resize_ratio):
        ori_h, ori_w, _ = image.shape
        # crop_h, crop_w = self.crop_size
        ori_focal = intrinsic[0]

        to_canonical_ratio = self.canonical_focal / ori_focal
        to_scale_ratio = resize_ratio / to_canonical_ratio
        return to_scale_ratio

    def __call__(self, images, labels, intrinsics, cam_models=None, other_labels=None, transform_paras=None):
        target_h, target_w, _ = images[0].shape
        resize_ratio_h = self.resize_h / target_h
        resize_ratio_w = self.resize_w / target_w
        resize_ratio = min(resize_ratio_h, resize_ratio_w)
        reshape_h = int(resize_ratio * target_h)
        reshape_w = int(resize_ratio * target_w)
        pad_h = max(self.resize_h - reshape_h, 0)
        pad_w = max(self.resize_w - reshape_w, 0)
        pad_h_half = int(pad_h / 2)
        pad_w_half = int(pad_w / 2)

        pad_info = [pad_h, pad_w, pad_h_half, pad_w_half]
        to_scale_ratio = self.get_label_scale_factor(images[0], intrinsics[0], resize_ratio)

        for i in range(len(images)):
            img = images[i]
            label = labels[i] if i < len(labels) else None
            intrinsic = intrinsics[i] if i < len(intrinsics) else None
            cam_model = cam_models[i] if cam_models is not None and i < len(cam_models) else None
            img, label, intrinsic, cam_model = self.main_data_transform(
                img, label, intrinsic, cam_model, resize_ratio, pad_info, to_scale_ratio)
            images[i] = img
            if label is not None:
                labels[i] = label
            if intrinsic is not None:
                intrinsics[i] = intrinsic
            if cam_model is not None:
                cam_models[i] = cam_model
        
        if other_labels is not None:
            
            for i, other_lab in enumerate(other_labels):
                # resize
                other_lab =  cv2.resize(other_lab, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_NEAREST)
                # pad
                other_labels[i] =  cv2.copyMakeBorder(
                    other_lab, 
                    pad_h_half, 
                    pad_h - pad_h_half, 
                    pad_w_half, 
                    pad_w - pad_w_half, 
                    cv2.BORDER_CONSTANT, 
                    value=self.ignore_label)

        pad = [pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
        if transform_paras is not None:
            pad_old = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
            new_pad = [pad_old[0] + pad[0], pad_old[1] + pad[1], pad_old[2] + pad[2], pad_old[3] + pad[3]]
            transform_paras.update(dict(pad=new_pad))
            if 'label_scale_factor' in transform_paras:
                transform_paras['label_scale_factor'] = transform_paras['label_scale_factor'] * 1.0 / to_scale_ratio
            else:
                transform_paras.update(label_scale_factor=1.0/to_scale_ratio)
        return images, labels, intrinsics, cam_models, other_labels, transform_paras


class BGR2RGB(object):
    # Converts image from BGR order to RGB order, for model initialized from Pytorch
    def __init__(self,  **kwargs):
        return
    def __call__(self, images, labels, intrinsics, cam_models=None,other_labels=None, transform_paras=None):
        for i, img in enumerate(images):
            images[i] = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        return images, labels, intrinsics, cam_models, other_labels, transform_paras
    
    
def resize_depth_preserve(depth, shape):
    """
    Resizes depth map preserving all valid depth pixels
    Multiple downsampled points can be assigned to the same pixel.

    Parameters
    ----------
    depth : np.array [h,w]
        Depth map
    shape : tuple (H,W)
        Output shape

    Returns
    -------
    depth : np.array [H,W,1]
        Resized depth map
    """
    # Store dimensions and reshapes to single column
    depth = np.squeeze(depth)
    h, w = depth.shape
    x = depth.reshape(-1)
    # Create coordinate grid
    uv = np.mgrid[:h, :w].transpose(1, 2, 0).reshape(-1, 2)
    # Filters valid points
    idx = x > 0
    crd, val = uv[idx], x[idx]
    # Downsamples coordinates
    crd[:, 0] = (crd[:, 0] * (shape[0] / h) + 0.5).astype(np.int32)
    crd[:, 1] = (crd[:, 1] * (shape[1] / w) + 0.5).astype(np.int32)
    # Filters points inside image
    idx = (crd[:, 0] < shape[0]) & (crd[:, 1] < shape[1])
    crd, val = crd[idx], val[idx]
    # Creates downsampled depth image and assigns points
    depth = np.zeros(shape)
    depth[crd[:, 0], crd[:, 1]] = val
    # Return resized depth map
    return depth


def build_camera_model(H : int, W : int, intrinsics : list) -> np.array:
    """
    Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map. 
    """
    fx, fy, u0, v0 = intrinsics
    f = (fx + fy) / 2.0
    # principle point location
    x_row = np.arange(0, W).astype(np.float32)
    x_row_center_norm = (x_row - u0) / W
    x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W]

    y_col = np.arange(0, H).astype(np.float32) 
    y_col_center_norm = (y_col - v0) / H
    y_center = np.tile(y_col_center_norm, (W, 1)).T

    # FoV
    fov_x = np.arctan(x_center / (f / W))
    fov_y =  np.arctan(y_center/ (f / H))

    cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2)
    return cam_model

def gray_to_colormap(img, cmap='rainbow'):
    """
    Transfer gray map to matplotlib colormap
    """
    assert img.ndim == 2

    img[img<0] = 0
    mask_invalid = img < 1e-10
    img = img / (img.max() + 1e-8)
    norm = matplotlib.colors.Normalize(vmin=0, vmax=1.1)
    cmap_m = matplotlib.cm.get_cmap(cmap)
    map = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap_m)
    colormap = (map.to_rgba(img)[:, :, :3] * 255).astype(np.uint8)
    colormap[mask_invalid] = 0
    return colormap