Spaces:
Paused
Paused
File size: 4,780 Bytes
7a2c9ac 4b42627 7a2c9ac f80cddb 7a2c9ac f80cddb 7a2c9ac f80cddb 8afac0c f80cddb 0c39f3c f80cddb 0c39f3c f80cddb 0c39f3c 708c129 0c39f3c 708c129 0c39f3c f80cddb 6744dfe f80cddb 8afac0c 885c69a 7d977ce 8afac0c bd1f179 f80cddb 2ebe11d f80cddb 69543a2 0c39f3c 69543a2 f80cddb 0bbee88 2ebe11d 917351d bd1f179 0bbee88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import torch
import torch.nn.functional as F
import logging
import os
import os.path as osp
import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
try:
from mmcv.utils import Config, DictAction
except:
from mmengine import Config, DictAction
from mono.utils.logger import setup_logger
import glob
from mono.utils.comm import init_env
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.utils.running import load_ckpt
from mono.utils.do_test import transform_test_data_scalecano, get_prediction
from mono.utils.custom_data import load_from_annos, load_data
from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud
from mono.utils.transform import gray_to_colormap
from mono.utils.visualization import vis_surface_normal
import gradio as gr
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg')
torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg')
cfg_large = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.large.py')
model_large = get_configured_monodepth_model(cfg_large, )
model_large, _, _, _ = load_ckpt('./weight/metric_depth_vit_large_800k.pth', model_large, strict_match=False)
model_large.eval()
cfg_small = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.small.py')
model_small = get_configured_monodepth_model(cfg_small, )
model_small, _, _, _ = load_ckpt('./weight/metric_depth_vit_small_800k.pth', model_small, strict_match=False)
model_small.eval()
device = "cpu"
model_large.to(device)
model_small.to(device)
def depth_normal(img, model_selection="vit-small"):
if model_selection == "vit-small":
model = model_small
cfg = cfg_small
elif model_selection == "vit-large":
model = model_large
cfg = cfg_large
else:
raise NotImplementedError
cv_image = np.array(img)
img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
intrinsic = [1000.0, 1000.0, img.shape[1]/2, img.shape[0]/2]
rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(img, intrinsic, cfg.data_basic)
with torch.no_grad():
pred_depth, pred_depth_scale, scale, output = get_prediction(
model = model,
input = rgb_input,
cam_model = cam_models_stacks,
pad_info = pad,
scale_info = label_scale_factor,
gt_depth = None,
normalize_scale = cfg.data_basic.depth_range[1],
ori_shape=[img.shape[0], img.shape[1]],
)
pred_normal = output['normal_out_list'][0][:, :3, :, :]
H, W = pred_normal.shape[2:]
pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]]
pred_depth = pred_depth.squeeze().cpu().numpy()
pred_depth[pred_depth<0] = 0
pred_color = gray_to_colormap(pred_depth)
pred_normal = pred_normal.squeeze()
if pred_normal.size(0) == 3:
pred_normal = pred_normal.permute(1,2,0)
pred_color_normal = vis_surface_normal(pred_normal)
##formatted = (output * 255 / np.max(output)).astype('uint8')
img = Image.fromarray(pred_color)
img_normal = Image.fromarray(pred_color_normal)
return img, img_normal
#inputs = gr.inputs.Image(type='pil', label="Original Image")
#depth = gr.outputs.Image(type="pil",label="Output Depth")
#normal = gr.outputs.Image(type="pil",label="Output Normal")
title = "Metric3D"
description = "Gradio demo for Metric3D (v2, more diverse models) running on CPU which takes in a single image for computing metric depth and surface normal. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2307.10984.pdf'>Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image</a> | <a href='https://github.com/YvanYin/Metric3D'>Github Repo</a></p>"
examples = [
["turtle.jpg"],
["lions.jpg"]
]
gr.Interface(
depth_normal,
inputs=[gr.Image(type='pil', label="Original Image"), gr.Dropdown(["vit-small", "vit-large"], label="Model", info="Will support more models later!")],
outputs=[gr.Image(type="pil",label="Output Depth"), gr.Image(type="pil",label="Output Normal")],
title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch() |