Spaces:
Paused
Paused
File size: 15,716 Bytes
7a2c9ac d166c37 f1b9e13 4b543c3 7a2c9ac 4b42627 7a2c9ac f80cddb 7a2c9ac f80cddb 470a712 f80cddb 7a2c9ac 470a712 8afac0c f80cddb 470a712 d166c37 1e9ca29 f80cddb 0c39f3c f80cddb 0c39f3c f80cddb df87b80 0c39f3c 470a712 708c129 0c39f3c 708c129 0c39f3c 470a712 0c39f3c 470a712 65edc3a f80cddb 470a712 6744dfe f80cddb 470a712 f80cddb b696ba4 8afac0c 470a712 65edc3a 470a712 a5b7ecf 470a712 65edc3a 470a712 65edc3a 470a712 65edc3a 470a712 65edc3a 470a712 8afac0c 65edc3a 470a712 65edc3a 470a712 8afac0c 470a712 65edc3a f80cddb 301edc7 470a712 75f865f 470a712 6ab39e6 301edc7 6ab39e6 301edc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import torch
import torch.nn.functional as F
import logging
import os
import os.path as osp
#os.system('nvidia-smi')
import cupy
import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
try:
from mmcv.utils import Config, DictAction
except:
from mmengine import Config, DictAction
from mono.utils.logger import setup_logger
import glob
from mono.utils.comm import init_env
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.utils.running import load_ckpt
from mono.utils.do_test import transform_test_data_scalecano, get_prediction
from mono.utils.custom_data import load_from_annos, load_data
from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from PIL import Image, ExifTags
import matplotlib.pyplot as plt
from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud, ply_to_obj
from mono.utils.transform import gray_to_colormap
from mono.utils.visualization import vis_surface_normal
import gradio as gr
import plotly.graph_objects as go
#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg')
#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg')
cfg_large = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.large.py')
model_large = get_configured_monodepth_model(cfg_large, )
model_large, _, _, _ = load_ckpt('./weight/metric_depth_vit_large_800k.pth', model_large, strict_match=False)
model_large.eval()
cfg_small = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.small.py')
model_small = get_configured_monodepth_model(cfg_small, )
model_small, _, _, _ = load_ckpt('./weight/metric_depth_vit_small_800k.pth', model_small, strict_match=False)
model_small.eval()
device = "cuda"
model_large.to(device)
model_small.to(device)
def predict_depth_normal(img, model_selection="vit-small", fx=1000.0, fy=1000.0, state_cache={}):
if model_selection == "vit-small":
model = model_small
cfg = cfg_small
elif model_selection == "vit-large":
model = model_large
cfg = cfg_large
else:
return None, None, None, None, state_cache, "Not implemented model."
if img is None:
return None, None, None, None, state_cache, "Please upload an image and wait for the upload to complete."
cv_image = np.array(img)
img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
intrinsic = [fx, fy, img.shape[1]/2, img.shape[0]/2]
rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(img, intrinsic, cfg.data_basic)
with torch.no_grad():
pred_depth, pred_depth_scale, scale, output, confidence = get_prediction(
model = model,
input = rgb_input,
cam_model = cam_models_stacks,
pad_info = pad,
scale_info = label_scale_factor,
gt_depth = None,
normalize_scale = cfg.data_basic.depth_range[1],
ori_shape=[img.shape[0], img.shape[1]],
)
pred_normal = output['normal_out_list'][0][:, :3, :, :]
H, W = pred_normal.shape[2:]
pred_normal = pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]]
pred_depth = pred_depth.squeeze().cpu().numpy()
pred_depth[pred_depth<0] = 0
pred_color = gray_to_colormap(pred_depth)
pred_normal = torch.nn.functional.interpolate(pred_normal, [img.shape[0], img.shape[1]], mode='bilinear').squeeze()
pred_normal = pred_normal.permute(1,2,0)
pred_color_normal = vis_surface_normal(pred_normal)
pred_normal = pred_normal.cpu().numpy()
# Storing depth and normal map in state for potential 3D reconstruction
state_cache['depth'] = pred_depth
state_cache['normal'] = pred_normal
state_cache['img'] = img
state_cache['intrinsic'] = intrinsic
state_cache['confidence'] = confidence
# save depth and normal map to .npy file
if 'save_dir' not in state_cache:
cache_id = np.random.randint(0, 100000000000)
while osp.exists(f'recon_cache/{cache_id:08d}'):
cache_id = np.random.randint(0, 100000000000)
state_cache['save_dir'] = f'recon_cache/{cache_id:08d}'
os.makedirs(state_cache['save_dir'], exist_ok=True)
depth_file = f"{state_cache['save_dir']}/depth.npy"
normal_file = f"{state_cache['save_dir']}/normal.npy"
np.save(depth_file, pred_depth)
np.save(normal_file, pred_normal)
##formatted = (output * 255 / np.max(output)).astype('uint8')
img = Image.fromarray(pred_color)
img_normal = Image.fromarray(pred_color_normal)
return img, depth_file, img_normal, normal_file, state_cache, "Success!"
def get_camera(img):
if img is None:
return None, None, None, "Please upload an image and wait for the upload to complete."
try:
exif = img.getexif()
exif.update(exif.get_ifd(ExifTags.IFD.Exif))
except:
exif = {}
sensor_width = exif.get(ExifTags.Base.FocalPlaneYResolution, None)
sensor_height = exif.get(ExifTags.Base.FocalPlaneXResolution, None)
focal_length = exif.get(ExifTags.Base.FocalLength, None)
# convert sensor size to mm, see https://photo.stackexchange.com/questions/40865/how-can-i-get-the-image-sensor-dimensions-in-mm-to-get-circle-of-confusion-from
w, h = img.size
sensor_width = w / sensor_width * 25.4 if sensor_width is not None else None
sensor_height = h / sensor_height * 25.4 if sensor_height is not None else None
focal_length = focal_length * 1.0 if focal_length is not None else None
message = "Success!"
if focal_length is None:
message = "Focal length not found in EXIF. Please manually input."
elif sensor_width is None and sensor_height is None:
sensor_width = 16
sensor_height = h / w * sensor_width
message = f"Sensor size not found in EXIF. Using {sensor_width}x{sensor_height:.2f} mm as default."
return sensor_width, sensor_height, focal_length, message
def get_intrinsic(img, sensor_width, sensor_height, focal_length):
if img is None:
return None, None, "Please upload an image and wait for the upload to complete."
if sensor_width is None or sensor_height is None or focal_length is None:
return 1000, 1000, "Insufficient information. Try detecting camera first or use default 1000 for fx and fy."
if sensor_width == 0 or sensor_height == 0 or focal_length == 0:
return 1000, 1000, "Insufficient information. Try detecting camera first or use default 1000 for fx and fy."
# calculate focal length in pixels
w, h = img.size
fx = w / sensor_width * focal_length if sensor_width is not None else None
fy = h / sensor_height * focal_length if sensor_height is not None else None
# if fx is None:
# return fy, fy, "Sensor width not provided, using fy for both fx and fy"
# if fy is None:
# return fx, fx, "Sensor height not provided, using fx for both fx and fy"
return fx, fy, "Success!"
def unprojection_pcd(state_cache):
depth_map = state_cache.get('depth', None)
normal_map = state_cache.get('normal', None)
img = state_cache.get('img', None)
intrinsic = state_cache.get('intrinsic', None)
if depth_map is None or img is None:
return None, "Please predict depth and normal first."
# # downsample/upsample the depth map to confidence map size
# confidence = state_cache.get('confidence', None)
# if confidence is not None:
# H, W = confidence.shape
# # intrinsic[0] *= W / depth_map.shape[1]
# # intrinsic[1] *= H / depth_map.shape[0]
# # intrinsic[2] *= W / depth_map.shape[1]
# # intrinsic[3] *= H / depth_map.shape[0]
# depth_map = cv2.resize(depth_map, (W, H), interpolation=cv2.INTER_LINEAR)
# img = cv2.resize(img, (W, H), interpolation=cv2.INTER_LINEAR)
# # filter out depth map by confidence
# mask = confidence.cpu().numpy() > 0
# downsample the depth map if too large
if depth_map.shape[0] > 1080:
scale = 1080 / depth_map.shape[0]
depth_map = cv2.resize(depth_map, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
intrinsic = [intrinsic[0]*scale, intrinsic[1]*scale, intrinsic[2]*scale, intrinsic[3]*scale]
if 'save_dir' not in state_cache:
cache_id = np.random.randint(0, 100000000000)
while osp.exists(f'recon_cache/{cache_id:08d}'):
cache_id = np.random.randint(0, 100000000000)
state_cache['save_dir'] = f'recon_cache/{cache_id:08d}'
os.makedirs(state_cache['save_dir'], exist_ok=True)
pcd_ply = f"{state_cache['save_dir']}/output.ply"
pcd_obj = pcd_ply.replace(".ply", ".obj")
pcd = reconstruct_pcd(depth_map, intrinsic[0], intrinsic[1], intrinsic[2], intrinsic[3])
# if mask is not None:
# pcd_filtered = pcd[mask]
# img_filtered = img[mask]
pcd_filtered = pcd.reshape(-1, 3)
img_filtered = img.reshape(-1, 3)
save_point_cloud(pcd_filtered, img_filtered, pcd_ply, binary=False)
# ply_to_obj(pcd_ply, pcd_obj)
# downsample the point cloud for visualization
num_samples = 250000
if pcd_filtered.shape[0] > num_samples:
indices = np.random.choice(pcd_filtered.shape[0], num_samples, replace=False)
pcd_downsampled = pcd_filtered[indices]
img_downsampled = img_filtered[indices]
else:
pcd_downsampled = pcd_filtered
img_downsampled = img_filtered
# plotly show
color_str = np.array([f"rgb({r},{g},{b})" for b,g,r in img_downsampled])
data=[go.Scatter3d(
x=pcd_downsampled[:,0],
y=pcd_downsampled[:,1],
z=pcd_downsampled[:,2],
mode='markers',
marker=dict(
size=1,
color=color_str,
opacity=0.8,
)
)]
layout = go.Layout(
margin=dict(l=0, r=0, b=0, t=0),
scene=dict(
camera = dict(
eye=dict(x=0, y=0, z=-1),
up=dict(x=0, y=-1, z=0)
),
xaxis=dict(showgrid=False, showticklabels=False, visible=False),
yaxis=dict(showgrid=False, showticklabels=False, visible=False),
zaxis=dict(showgrid=False, showticklabels=False, visible=False),
)
)
fig = go.Figure(data=data, layout=layout)
return fig, pcd_ply, "Success!"
# title = "Metric3D"
# description = '''# Metric3Dv2: A versatile monocular geometric foundation model for zero-shot metric depth and surface normal estimation
# Gradio demo for Metric3D v1/v2 which takes in a single image for computing metric depth and surface normal. To use it, simply upload your image, or click one of the examples to load them. Learn more from our paper linked below.'''
# article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2307.10984.pdf'>Metric3D arxiv</a> | <a href='https://arxiv.org/abs/2404.15506'>Metric3Dv2 arxiv</a> | <a href='https://github.com/YvanYin/Metric3D'>Github Repo</a></p>"
# custom_css = '''#button1, #button2 {
# width: 20px;
# }'''
# examples = [
# #["turtle.jpg"],
# #["lions.jpg"]
# #["files/gundam.jpg"],
# "files/p50_pro.jpg",
# "files/iphone13.JPG",
# "files/canon_cat.JPG",
# "files/canon_dog.JPG",
# "files/museum.jpg",
# "files/terra.jpg",
# "files/underwater.jpg",
# "files/venue.jpg",
# ]
# with gr.Blocks(title=title, css=custom_css) as demo:
# gr.Markdown(description + article)
# # input and control components
# with gr.Row():
# with gr.Column():
# image_input = gr.Image(type='pil', label="Original Image")
# _ = gr.Examples(examples=examples, inputs=[image_input])
# with gr.Column():
# model_dropdown = gr.Dropdown(["vit-small", "vit-large"], label="Model", value="vit-large")
# with gr.Accordion('Advanced options (beta)', open=True):
# with gr.Row():
# sensor_width = gr.Number(None, label="Sensor Width in mm", precision=2)
# sensor_height = gr.Number(None, label="Sensor Height in mm", precision=2)
# focal_len = gr.Number(None, label="Focal Length in mm", precision=2)
# camera_detector = gr.Button("Detect Camera from EXIF", elem_id="#button1")
# with gr.Row():
# fx = gr.Number(1000.0, label="fx in pixels", precision=2)
# fy = gr.Number(1000.0, label="fy in pixels", precision=2)
# focal_detector = gr.Button("Calculate Intrinsic", elem_id="#button2")
# message_box = gr.Textbox(label="Messages")
# # depth and normal
# submit_button = gr.Button("Predict Depth & Normal")
# with gr.Row():
# with gr.Column():
# depth_output = gr.Image(label="Output Depth")
# depth_file = gr.File(label="Depth (.npy)")
# with gr.Column():
# normal_output = gr.Image(label="Output Normal")
# normal_file = gr.File(label="Normal (.npy)")
# # 3D reconstruction
# reconstruct_button = gr.Button("Reconstruct 3D")
# pcd_output = gr.Plot(label="3D Point Cloud (Sampled sparse version)")
# pcd_ply = gr.File(label="3D Point Cloud (.ply)")
# # cache for depth, normal maps and other states
# state_cache = gr.State({})
# # detect focal length in pixels
# camera_detector.click(fn=get_camera, inputs=[image_input], outputs=[sensor_width, sensor_height, focal_len, message_box])
# focal_detector.click(fn=get_intrinsic, inputs=[image_input, sensor_width, sensor_height, focal_len], outputs=[fx, fy, message_box])
# submit_button.click(fn=predict_depth_normal, inputs=[image_input, model_dropdown, fx, fy, state_cache], outputs=[depth_output, depth_file, normal_output, normal_file, state_cache, message_box])
# reconstruct_button.click(fn=unprojection_pcd, inputs=[state_cache], outputs=[pcd_output, pcd_ply, message_box])
#demo.launch(server_name="0.0.0.0")
# iface = gr.Interface(
# depth_normal,
# inputs=[
# gr.Image(type='pil', label="Original Image"),
# gr.Dropdown(["vit-small", "vit-large"], label="Model", info="Select a model type", value="vit-large")
# ],
# outputs=[
# gr.Image(type="pil", label="Output Depth"),
# gr.Image(type="pil", label="Output Normal"),
# gr.Textbox(label="Messages")
# ],
# title=title,
# description=description,
# article=article,
# examples=examples,
# analytics_enabled=False
# )
# iface.launch()
gradio_app = gr.Interface(
fn=predict_depth_normal,
inputs=[
gr.Image(type='pil', label="Original Image"),
gr.Dropdown(["vit-small", "vit-large"], label="Model"),
gr.Number(1000.0, label="fx in pixels"),
gr.Number(1000.0, label="fy in pixels")
],
outputs=[
gr.Image(label="Output Depth"),
gr.File(label="Depth (.npy)"),
gr.Image(label="Output Normal"),
gr.File(label="Normal (.npy)"),
gr.Textbox(label="Messages")
],
title="Metric3D",
description="Metric3Dv2: A versatile monocular geometric foundation model for zero-shot metric depth and surface normal estimation."
)
if __name__ == "__main__":
gradio_app.launch(share=True) |