File size: 15,716 Bytes
7a2c9ac
 
 
 
 
 
 
d166c37
f1b9e13
4b543c3
 
7a2c9ac
4b42627
7a2c9ac
f80cddb
 
 
 
 
 
 
 
 
 
 
7a2c9ac
f80cddb
 
 
 
 
470a712
f80cddb
7a2c9ac
470a712
8afac0c
 
f80cddb
470a712
d166c37
1e9ca29
 
f80cddb
0c39f3c
 
 
 
f80cddb
0c39f3c
 
 
 
f80cddb
df87b80
0c39f3c
 
 
470a712
708c129
0c39f3c
 
708c129
0c39f3c
 
 
470a712
0c39f3c
470a712
 
 
65edc3a
f80cddb
 
470a712
6744dfe
f80cddb
 
470a712
f80cddb
 
 
 
 
 
 
 
 
 
 
 
b696ba4
8afac0c
 
 
 
470a712
 
 
 
 
65edc3a
470a712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b7ecf
470a712
65edc3a
470a712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65edc3a
470a712
 
 
 
65edc3a
470a712
 
 
 
65edc3a
470a712
8afac0c
65edc3a
470a712
 
 
 
 
65edc3a
470a712
 
8afac0c
470a712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65edc3a
f80cddb
301edc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470a712
75f865f
470a712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ab39e6
 
 
301edc7
6ab39e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301edc7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

import torch
import torch.nn.functional as F
import logging
import os
import os.path as osp

#os.system('nvidia-smi')

import cupy

import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

try:
    from mmcv.utils import Config, DictAction
except:
    from mmengine import Config, DictAction
from mono.utils.logger import setup_logger
import glob
from mono.utils.comm import init_env
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.utils.running import load_ckpt
from mono.utils.do_test import transform_test_data_scalecano, get_prediction
from mono.utils.custom_data import load_from_annos, load_data

from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from PIL import Image, ExifTags
import matplotlib.pyplot as plt

from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud, ply_to_obj
from mono.utils.transform import gray_to_colormap
from mono.utils.visualization import vis_surface_normal
import gradio as gr
import plotly.graph_objects as go

#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg')
#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg')

cfg_large = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.large.py')
model_large = get_configured_monodepth_model(cfg_large, )
model_large, _,  _, _ = load_ckpt('./weight/metric_depth_vit_large_800k.pth', model_large, strict_match=False)
model_large.eval()

cfg_small = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.small.py')
model_small = get_configured_monodepth_model(cfg_small, )
model_small, _,  _, _ = load_ckpt('./weight/metric_depth_vit_small_800k.pth', model_small, strict_match=False)
model_small.eval()

device = "cuda"
model_large.to(device)
model_small.to(device)

def predict_depth_normal(img, model_selection="vit-small", fx=1000.0, fy=1000.0, state_cache={}):
    if model_selection == "vit-small":
        model = model_small
        cfg = cfg_small
    elif model_selection == "vit-large":
        model = model_large
        cfg = cfg_large
    else:
        return None, None, None, None, state_cache, "Not implemented model."
    
    if img is None:
        return None, None, None, None, state_cache, "Please upload an image and wait for the upload to complete."


    cv_image = np.array(img) 
    img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
    intrinsic = [fx, fy, img.shape[1]/2, img.shape[0]/2]
    rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(img, intrinsic, cfg.data_basic)

    with torch.no_grad():
        pred_depth, pred_depth_scale, scale, output, confidence = get_prediction(
                    model = model,
                    input = rgb_input,
                    cam_model = cam_models_stacks,
                    pad_info = pad,
                    scale_info = label_scale_factor,
                    gt_depth = None,
                    normalize_scale = cfg.data_basic.depth_range[1],
                    ori_shape=[img.shape[0], img.shape[1]],
                )

        pred_normal = output['normal_out_list'][0][:, :3, :, :] 
        H, W = pred_normal.shape[2:]
        pred_normal = pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]]

    pred_depth = pred_depth.squeeze().cpu().numpy()
    pred_depth[pred_depth<0] = 0
    pred_color = gray_to_colormap(pred_depth)

    pred_normal = torch.nn.functional.interpolate(pred_normal, [img.shape[0], img.shape[1]], mode='bilinear').squeeze()
    pred_normal = pred_normal.permute(1,2,0)
    pred_color_normal = vis_surface_normal(pred_normal)
    pred_normal = pred_normal.cpu().numpy()
    
    # Storing depth and normal map in state for potential 3D reconstruction
    state_cache['depth'] = pred_depth
    state_cache['normal'] = pred_normal
    state_cache['img'] = img
    state_cache['intrinsic'] = intrinsic
    state_cache['confidence'] = confidence 

    # save depth and normal map to .npy file
    if 'save_dir' not in state_cache:
        cache_id = np.random.randint(0, 100000000000)
        while osp.exists(f'recon_cache/{cache_id:08d}'):
            cache_id = np.random.randint(0, 100000000000)
        state_cache['save_dir'] = f'recon_cache/{cache_id:08d}'
        os.makedirs(state_cache['save_dir'], exist_ok=True)
    depth_file = f"{state_cache['save_dir']}/depth.npy"
    normal_file = f"{state_cache['save_dir']}/normal.npy"
    np.save(depth_file, pred_depth)
    np.save(normal_file, pred_normal)

    ##formatted = (output * 255 / np.max(output)).astype('uint8')
    img = Image.fromarray(pred_color)
    img_normal = Image.fromarray(pred_color_normal)
    return img, depth_file, img_normal, normal_file, state_cache, "Success!"

def get_camera(img):
    if img is None:
        return None, None, None, "Please upload an image and wait for the upload to complete."
    try:
        exif = img.getexif()
        exif.update(exif.get_ifd(ExifTags.IFD.Exif))
    except:
        exif = {}
    sensor_width = exif.get(ExifTags.Base.FocalPlaneYResolution, None)
    sensor_height = exif.get(ExifTags.Base.FocalPlaneXResolution, None)
    focal_length = exif.get(ExifTags.Base.FocalLength, None)
    
    # convert sensor size to mm, see https://photo.stackexchange.com/questions/40865/how-can-i-get-the-image-sensor-dimensions-in-mm-to-get-circle-of-confusion-from
    w, h = img.size
    sensor_width = w / sensor_width * 25.4 if sensor_width is not None else None
    sensor_height = h / sensor_height * 25.4 if sensor_height is not None else None
    focal_length = focal_length * 1.0 if focal_length is not None else None

    message = "Success!"
    if focal_length is None:
        message = "Focal length not found in EXIF. Please manually input."
    elif sensor_width is None and sensor_height is None:
        sensor_width = 16
        sensor_height = h / w * sensor_width
        message = f"Sensor size not found in EXIF. Using {sensor_width}x{sensor_height:.2f} mm as default."

    return sensor_width, sensor_height, focal_length, message

def get_intrinsic(img, sensor_width, sensor_height, focal_length):
    if img is None:
        return None, None, "Please upload an image and wait for the upload to complete."
    if sensor_width is None or sensor_height is None or focal_length is None:
        return 1000, 1000, "Insufficient information. Try detecting camera first or use default 1000 for fx and fy."
    if sensor_width == 0 or sensor_height == 0 or focal_length == 0:
        return 1000, 1000, "Insufficient information. Try detecting camera first or use default 1000 for fx and fy."
    
    # calculate focal length in pixels
    w, h = img.size
    fx = w / sensor_width * focal_length if sensor_width is not None else None
    fy = h / sensor_height * focal_length if sensor_height is not None else None

    # if fx is None:
    #     return fy, fy, "Sensor width not provided, using fy for both fx and fy"
    # if fy is None:
    #     return fx, fx, "Sensor height not provided, using fx for both fx and fy"

    return fx, fy, "Success!"


def unprojection_pcd(state_cache):
    depth_map = state_cache.get('depth', None)
    normal_map = state_cache.get('normal', None)
    img = state_cache.get('img', None)
    intrinsic = state_cache.get('intrinsic', None)

    if depth_map is None or img is None:
        return None, "Please predict depth and normal first."
    
    # # downsample/upsample the depth map to confidence map size
    # confidence = state_cache.get('confidence', None)
    # if confidence is not None:
    #     H, W = confidence.shape
    #     # intrinsic[0] *= W / depth_map.shape[1]
    #     # intrinsic[1] *= H / depth_map.shape[0]
    #     # intrinsic[2] *= W / depth_map.shape[1]
    #     # intrinsic[3] *= H / depth_map.shape[0]
    #     depth_map = cv2.resize(depth_map, (W, H), interpolation=cv2.INTER_LINEAR)
    #     img = cv2.resize(img, (W, H), interpolation=cv2.INTER_LINEAR)
    
    #     # filter out depth map by confidence
    #     mask = confidence.cpu().numpy() > 0

    # downsample the depth map if too large
    if depth_map.shape[0] > 1080:
        scale = 1080 / depth_map.shape[0]
        depth_map = cv2.resize(depth_map, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
        img = cv2.resize(img, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_LINEAR)
        intrinsic = [intrinsic[0]*scale, intrinsic[1]*scale, intrinsic[2]*scale, intrinsic[3]*scale]
    
    if 'save_dir' not in state_cache:
        cache_id = np.random.randint(0, 100000000000)
        while osp.exists(f'recon_cache/{cache_id:08d}'):
            cache_id = np.random.randint(0, 100000000000)
        state_cache['save_dir'] = f'recon_cache/{cache_id:08d}'
        os.makedirs(state_cache['save_dir'], exist_ok=True)

    pcd_ply = f"{state_cache['save_dir']}/output.ply"
    pcd_obj = pcd_ply.replace(".ply", ".obj")
    
    pcd = reconstruct_pcd(depth_map, intrinsic[0], intrinsic[1], intrinsic[2], intrinsic[3])
    # if mask is not None:
    #     pcd_filtered = pcd[mask]
    #     img_filtered = img[mask]
    pcd_filtered = pcd.reshape(-1, 3)
    img_filtered = img.reshape(-1, 3)

    save_point_cloud(pcd_filtered, img_filtered, pcd_ply, binary=False)
    # ply_to_obj(pcd_ply, pcd_obj)

    # downsample the point cloud for visualization
    num_samples = 250000
    if pcd_filtered.shape[0] > num_samples:
        indices = np.random.choice(pcd_filtered.shape[0], num_samples, replace=False)
        pcd_downsampled = pcd_filtered[indices]
        img_downsampled = img_filtered[indices]
    else:
        pcd_downsampled = pcd_filtered
        img_downsampled = img_filtered

    # plotly show
    color_str = np.array([f"rgb({r},{g},{b})" for b,g,r in img_downsampled])
    data=[go.Scatter3d(
        x=pcd_downsampled[:,0],
        y=pcd_downsampled[:,1],
        z=pcd_downsampled[:,2],
        mode='markers',
        marker=dict(
            size=1,
            color=color_str,
            opacity=0.8,
        )
    )]
    layout = go.Layout(
        margin=dict(l=0, r=0, b=0, t=0),
        scene=dict(
            camera = dict(
                eye=dict(x=0, y=0, z=-1),
                up=dict(x=0, y=-1, z=0)
            ),
            xaxis=dict(showgrid=False, showticklabels=False, visible=False),
            yaxis=dict(showgrid=False, showticklabels=False, visible=False),
            zaxis=dict(showgrid=False, showticklabels=False, visible=False),
        )
    )
    fig = go.Figure(data=data, layout=layout)

    return fig, pcd_ply, "Success!"


# title = "Metric3D"
# description = '''# Metric3Dv2: A versatile monocular geometric foundation model for zero-shot metric depth and surface normal estimation
# Gradio demo for Metric3D v1/v2 which takes in a single image for computing metric depth and surface normal. To use it, simply upload your image, or click one of the examples to load them. Learn more from our paper linked below.'''
# article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2307.10984.pdf'>Metric3D arxiv</a> | <a href='https://arxiv.org/abs/2404.15506'>Metric3Dv2 arxiv</a> | <a href='https://github.com/YvanYin/Metric3D'>Github Repo</a></p>"

# custom_css = '''#button1, #button2 {
#     width: 20px;
# }'''

# examples = [
#     #["turtle.jpg"],
#     #["lions.jpg"]
#     #["files/gundam.jpg"],
#     "files/p50_pro.jpg",
#     "files/iphone13.JPG",
#     "files/canon_cat.JPG",
#     "files/canon_dog.JPG",
#     "files/museum.jpg",
#     "files/terra.jpg",
#     "files/underwater.jpg",
#     "files/venue.jpg",
# ]


# with gr.Blocks(title=title, css=custom_css) as demo:
#     gr.Markdown(description + article)

#     # input and control components
#     with gr.Row():
#         with gr.Column():
#             image_input = gr.Image(type='pil', label="Original Image")
#             _ = gr.Examples(examples=examples, inputs=[image_input])
#         with gr.Column():
#             model_dropdown = gr.Dropdown(["vit-small", "vit-large"], label="Model", value="vit-large")

#             with gr.Accordion('Advanced options (beta)', open=True):
#                 with gr.Row():
#                     sensor_width = gr.Number(None, label="Sensor Width in mm", precision=2)
#                     sensor_height = gr.Number(None, label="Sensor Height in mm", precision=2)
#                     focal_len = gr.Number(None, label="Focal Length in mm", precision=2)
#                     camera_detector = gr.Button("Detect Camera from EXIF", elem_id="#button1")
#                 with gr.Row():
#                     fx = gr.Number(1000.0, label="fx in pixels", precision=2)
#                     fy = gr.Number(1000.0, label="fy in pixels", precision=2)
#                     focal_detector = gr.Button("Calculate Intrinsic", elem_id="#button2")

#             message_box = gr.Textbox(label="Messages")

#     # depth and normal
#     submit_button = gr.Button("Predict Depth & Normal")
#     with gr.Row():
#         with gr.Column():
#             depth_output = gr.Image(label="Output Depth")
#             depth_file = gr.File(label="Depth (.npy)")
#         with gr.Column():
#             normal_output = gr.Image(label="Output Normal")
#             normal_file = gr.File(label="Normal (.npy)")

#     # 3D reconstruction
#     reconstruct_button = gr.Button("Reconstruct 3D")
#     pcd_output = gr.Plot(label="3D Point Cloud (Sampled sparse version)")
#     pcd_ply = gr.File(label="3D Point Cloud (.ply)")

#     # cache for depth, normal maps and other states
#     state_cache = gr.State({})

#     # detect focal length in pixels
#     camera_detector.click(fn=get_camera, inputs=[image_input], outputs=[sensor_width, sensor_height, focal_len, message_box])
#     focal_detector.click(fn=get_intrinsic, inputs=[image_input, sensor_width, sensor_height, focal_len], outputs=[fx, fy, message_box])

#     submit_button.click(fn=predict_depth_normal, inputs=[image_input, model_dropdown, fx, fy, state_cache], outputs=[depth_output, depth_file, normal_output, normal_file, state_cache, message_box])
#     reconstruct_button.click(fn=unprojection_pcd, inputs=[state_cache], outputs=[pcd_output, pcd_ply, message_box])

#demo.launch(server_name="0.0.0.0")


# iface = gr.Interface(
#     depth_normal, 
#     inputs=[
#         gr.Image(type='pil', label="Original Image"),
#         gr.Dropdown(["vit-small", "vit-large"], label="Model", info="Select a model type", value="vit-large")
#     ],
#     outputs=[
#         gr.Image(type="pil", label="Output Depth"),
#         gr.Image(type="pil", label="Output Normal"),
#         gr.Textbox(label="Messages")
#     ],
#     title=title,
#     description=description,
#     article=article,
#     examples=examples,
#     analytics_enabled=False
# )

# iface.launch()


gradio_app = gr.Interface(
    fn=predict_depth_normal,
    inputs=[
        gr.Image(type='pil', label="Original Image"),
        gr.Dropdown(["vit-small", "vit-large"], label="Model"),
        gr.Number(1000.0, label="fx in pixels"),
        gr.Number(1000.0, label="fy in pixels")
    ],
    outputs=[
        gr.Image(label="Output Depth"),
        gr.File(label="Depth (.npy)"),
        gr.Image(label="Output Normal"),
        gr.File(label="Normal (.npy)"),
        gr.Textbox(label="Messages")
    ],
    title="Metric3D",
    description="Metric3Dv2: A versatile monocular geometric foundation model for zero-shot metric depth and surface normal estimation."
)

if __name__ == "__main__":
    gradio_app.launch(share=True)