Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.models.layers import trunc_normal_, DropPath | |
from timm.models.registry import register_model | |
class Block(nn.Module): | |
r""" ConvNeXt Block. There are two equivalent implementations: | |
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) | |
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back | |
We use (2) as we find it slightly faster in PyTorch | |
Args: | |
dim (int): Number of input channels. | |
drop_path (float): Stochastic depth rate. Default: 0.0 | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
""" | |
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6): | |
super().__init__() | |
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv | |
self.norm = LayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(4 * dim, dim) | |
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)), | |
requires_grad=True) if layer_scale_init_value > 0 else None | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
def forward(self, x): | |
input = x | |
x = self.dwconv(x) | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
if self.gamma is not None: | |
x = self.gamma * x | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = input + self.drop_path(x) | |
return x | |
class ConvNeXt(nn.Module): | |
r""" ConvNeXt | |
A PyTorch impl of : `A ConvNet for the 2020s` - | |
https://arxiv.org/pdf/2201.03545.pdf | |
Args: | |
in_chans (int): Number of input image channels. Default: 3 | |
num_classes (int): Number of classes for classification head. Default: 1000 | |
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3] | |
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768] | |
drop_path_rate (float): Stochastic depth rate. Default: 0. | |
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6. | |
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1. | |
""" | |
def __init__(self, in_chans=3, num_classes=1000, | |
depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0., | |
layer_scale_init_value=1e-6, head_init_scale=1., | |
**kwargs,): | |
super().__init__() | |
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers | |
stem = nn.Sequential( | |
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), | |
LayerNorm(dims[0], eps=1e-6, data_format="channels_first") | |
) | |
self.downsample_layers.append(stem) | |
for i in range(3): | |
downsample_layer = nn.Sequential( | |
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"), | |
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), | |
) | |
self.downsample_layers.append(downsample_layer) | |
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks | |
dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] | |
cur = 0 | |
for i in range(4): | |
stage = nn.Sequential( | |
*[Block(dim=dims[i], drop_path=dp_rates[cur + j], | |
layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])] | |
) | |
self.stages.append(stage) | |
cur += depths[i] | |
#self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer | |
#self.head = nn.Linear(dims[-1], num_classes) | |
self.apply(self._init_weights) | |
#self.head.weight.data.mul_(head_init_scale) | |
#self.head.bias.data.mul_(head_init_scale) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv2d, nn.Linear)): | |
trunc_normal_(m.weight, std=.02) | |
nn.init.constant_(m.bias, 0) | |
def forward_features(self, x): | |
features = [] | |
for i in range(4): | |
x = self.downsample_layers[i](x) | |
x = self.stages[i](x) | |
features.append(x) | |
return features # global average pooling, (N, C, H, W) -> (N, C) | |
def forward(self, x): | |
#x = self.forward_features(x) | |
#x = self.head(x) | |
features = self.forward_features(x) | |
return features | |
class LayerNorm(nn.Module): | |
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. | |
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with | |
shape (batch_size, height, width, channels) while channels_first corresponds to inputs | |
with shape (batch_size, channels, height, width). | |
""" | |
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ["channels_last", "channels_first"]: | |
raise NotImplementedError | |
self.normalized_shape = (normalized_shape, ) | |
def forward(self, x): | |
if self.data_format == "channels_last": | |
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
elif self.data_format == "channels_first": | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
model_urls = { | |
"convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth", | |
"convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth", | |
"convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth", | |
"convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth", | |
"convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth", | |
"convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth", | |
"convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth", | |
"convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth", | |
"convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth", | |
} | |
def convnext_tiny(pretrained=True,in_22k=False, **kwargs): | |
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs) | |
if pretrained: | |
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu") | |
#url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k'] | |
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) | |
model_dict = model.state_dict() | |
pretrained_dict = {} | |
unmatched_pretrained_dict = {} | |
for k, v in checkpoint['model'].items(): | |
if k in model_dict: | |
pretrained_dict[k] = v | |
else: | |
unmatched_pretrained_dict[k] = v | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
print( | |
'Successfully loaded pretrained %d params, and %d paras are unmatched.' | |
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys()))) | |
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys()) | |
return model | |
def convnext_small(pretrained=True,in_22k=False, **kwargs): | |
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs) | |
if pretrained: | |
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu") | |
#url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k'] | |
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") | |
model_dict = model.state_dict() | |
pretrained_dict = {} | |
unmatched_pretrained_dict = {} | |
for k, v in checkpoint['model'].items(): | |
if k in model_dict: | |
pretrained_dict[k] = v | |
else: | |
unmatched_pretrained_dict[k] = v | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
print( | |
'Successfully loaded pretrained %d params, and %d paras are unmatched.' | |
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys()))) | |
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys()) | |
return model | |
def convnext_base(pretrained=True, in_22k=False, **kwargs): | |
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs) | |
if pretrained: | |
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu") | |
#url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k'] | |
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") | |
model_dict = model.state_dict() | |
pretrained_dict = {} | |
unmatched_pretrained_dict = {} | |
for k, v in checkpoint['model'].items(): | |
if k in model_dict: | |
pretrained_dict[k] = v | |
else: | |
unmatched_pretrained_dict[k] = v | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
print( | |
'Successfully loaded pretrained %d params, and %d paras are unmatched.' | |
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys()))) | |
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys()) | |
return model | |
def convnext_large(pretrained=True, in_22k=False, **kwargs): | |
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs) | |
if pretrained: | |
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu") | |
#url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k'] | |
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") | |
model_dict = model.state_dict() | |
pretrained_dict = {} | |
unmatched_pretrained_dict = {} | |
for k, v in checkpoint['model'].items(): | |
if k in model_dict: | |
pretrained_dict[k] = v | |
else: | |
unmatched_pretrained_dict[k] = v | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
print( | |
'Successfully loaded pretrained %d params, and %d paras are unmatched.' | |
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys()))) | |
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys()) | |
return model | |
def convnext_xlarge(pretrained=True, in_22k=False, **kwargs): | |
model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs) | |
if pretrained: | |
assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True" | |
checkpoint = torch.load(kwargs['checkpoint'], map_location="cpu") | |
#url = model_urls['convnext_xlarge_22k'] | |
#checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") | |
model_dict = model.state_dict() | |
pretrained_dict = {} | |
unmatched_pretrained_dict = {} | |
for k, v in checkpoint['model'].items(): | |
if k in model_dict: | |
pretrained_dict[k] = v | |
else: | |
unmatched_pretrained_dict[k] = v | |
model_dict.update(pretrained_dict) | |
model.load_state_dict(model_dict) | |
print( | |
'Successfully loaded pretrained %d params, and %d paras are unmatched.' | |
%(len(pretrained_dict.keys()), len(unmatched_pretrained_dict.keys()))) | |
print('Unmatched pretrained paras are :', unmatched_pretrained_dict.keys()) | |
return model | |
if __name__ == '__main__': | |
import torch | |
model = convnext_base(True, in_22k=False).cuda() | |
rgb = torch.rand((2, 3, 256, 256)).cuda() | |
out = model(rgb) | |
print(len(out)) | |
for i, ft in enumerate(out): | |
print(i, ft.shape) | |