Metric3D_GPU / mono /utils /visualization.py
JUGGHM's picture
Upload 62 files
8a32844
raw
history blame
4.83 kB
import matplotlib.pyplot as plt
import os, cv2
import numpy as np
from mono.utils.transform import gray_to_colormap
import shutil
import glob
from mono.utils.running import main_process
import torch
from html4vision import Col, imagetable
def save_raw_imgs(
pred: torch.tensor,
rgb: torch.tensor,
filename: str,
save_dir: str,
scale: float=200.0,
target: torch.tensor=None,
):
"""
Save raw GT, predictions, RGB in the same file.
"""
cv2.imwrite(os.path.join(save_dir, filename[:-4]+'_rgb.jpg'), rgb)
cv2.imwrite(os.path.join(save_dir, filename[:-4]+'_d.png'), (pred*scale).astype(np.uint16))
if target is not None:
cv2.imwrite(os.path.join(save_dir, filename[:-4]+'_gt.png'), (target*scale).astype(np.uint16))
def save_val_imgs(
iter: int,
pred: torch.tensor,
target: torch.tensor,
rgb: torch.tensor,
filename: str,
save_dir: str,
tb_logger=None
):
"""
Save GT, predictions, RGB in the same file.
"""
rgb, pred_scale, target_scale, pred_color, target_color = get_data_for_log(pred, target, rgb)
rgb = rgb.transpose((1, 2, 0))
cat_img = np.concatenate([rgb, pred_color, target_color], axis=0)
plt.imsave(os.path.join(save_dir, filename[:-4]+'_merge.jpg'), cat_img)
# save to tensorboard
if tb_logger is not None:
tb_logger.add_image(f'{filename[:-4]}_merge.jpg', cat_img.transpose((2, 0, 1)), iter)
def save_normal_val_imgs(
iter: int,
pred: torch.tensor,
targ: torch.tensor,
rgb: torch.tensor,
filename: str,
save_dir: str,
tb_logger=None,
mask=None,
):
"""
Save GT, predictions, RGB in the same file.
"""
mean = np.array([123.675, 116.28, 103.53])[np.newaxis, np.newaxis, :]
std= np.array([58.395, 57.12, 57.375])[np.newaxis, np.newaxis, :]
pred = pred.squeeze()
targ = targ.squeeze()
rgb = rgb.squeeze()
if pred.size(0) == 3:
pred = pred.permute(1,2,0)
if targ.size(0) == 3:
targ = targ.permute(1,2,0)
if rgb.size(0) == 3:
rgb = rgb.permute(1,2,0)
pred_color = vis_surface_normal(pred, mask)
targ_color = vis_surface_normal(targ, mask)
rgb_color = ((rgb.cpu().numpy() * std) + mean).astype(np.uint8)
try:
cat_img = np.concatenate([rgb_color, pred_color, targ_color], axis=0)
except:
pred_color = cv2.resize(pred_color, (rgb.shape[1], rgb.shape[0]))
targ_color = cv2.resize(targ_color, (rgb.shape[1], rgb.shape[0]))
cat_img = np.concatenate([rgb_color, pred_color, targ_color], axis=0)
plt.imsave(os.path.join(save_dir, filename[:-4]+'_merge.jpg'), cat_img)
# cv2.imwrite(os.path.join(save_dir, filename[:-4]+'.jpg'), pred_color)
# save to tensorboard
if tb_logger is not None:
tb_logger.add_image(f'{filename[:-4]}_merge.jpg', cat_img.transpose((2, 0, 1)), iter)
def get_data_for_log(pred: torch.tensor, target: torch.tensor, rgb: torch.tensor):
mean = np.array([123.675, 116.28, 103.53])[:, np.newaxis, np.newaxis]
std= np.array([58.395, 57.12, 57.375])[:, np.newaxis, np.newaxis]
pred = pred.squeeze().cpu().numpy()
target = target.squeeze().cpu().numpy()
rgb = rgb.squeeze().cpu().numpy()
pred[pred<0] = 0
target[target<0] = 0
max_scale = max(pred.max(), target.max())
pred_scale = (pred/max_scale * 10000).astype(np.uint16)
target_scale = (target/max_scale * 10000).astype(np.uint16)
pred_color = gray_to_colormap(pred)
target_color = gray_to_colormap(target)
pred_color = cv2.resize(pred_color, (rgb.shape[2], rgb.shape[1]))
target_color = cv2.resize(target_color, (rgb.shape[2], rgb.shape[1]))
rgb = ((rgb * std) + mean).astype(np.uint8)
return rgb, pred_scale, target_scale, pred_color, target_color
def create_html(name2path, save_path='index.html', size=(256, 384)):
# table description
cols = []
for k, v in name2path.items():
col_i = Col('img', k, v) # specify image content for column
cols.append(col_i)
# html table generation
imagetable(cols, out_file=save_path, imsize=size)
def vis_surface_normal(normal: torch.tensor, mask: torch.tensor=None) -> np.array:
"""
Visualize surface normal. Transfer surface normal value from [-1, 1] to [0, 255]
Aargs:
normal (torch.tensor, [h, w, 3]): surface normal
mask (torch.tensor, [h, w]): valid masks
"""
normal = normal.cpu().numpy().squeeze()
n_img_L2 = np.sqrt(np.sum(normal ** 2, axis=2, keepdims=True))
n_img_norm = normal / (n_img_L2 + 1e-8)
normal_vis = n_img_norm * 127
normal_vis += 128
normal_vis = normal_vis.astype(np.uint8)
if mask is not None:
mask = mask.cpu().numpy().squeeze()
normal_vis[~mask] = 0
return normal_vis