File size: 11,398 Bytes
3e9af73
2c19098
712e3af
2c19098
26063e6
73696f4
 
 
 
 
 
 
 
 
 
b8843c9
 
2c19098
76b564d
a838e2b
73696f4
 
 
 
 
 
 
 
 
 
 
b8843c9
76b564d
 
0b1c1d9
a838e2b
 
b8843c9
 
 
 
 
 
 
 
 
 
 
 
890944a
76b564d
 
a838e2b
 
3e9af73
a838e2b
 
73696f4
9c52fdd
a838e2b
 
 
 
 
 
7b4bfcd
a838e2b
712e3af
a838e2b
712e3af
a838e2b
712e3af
a838e2b
76b564d
0b1c1d9
76b564d
a838e2b
0b1c1d9
a838e2b
73696f4
b8843c9
 
 
 
 
 
73696f4
 
0b1c1d9
73696f4
 
0b1c1d9
01f98b3
0b1c1d9
 
 
 
 
 
 
890944a
0b1c1d9
2c19098
0b1c1d9
712e3af
0b1c1d9
712e3af
a838e2b
0b1c1d9
a838e2b
73696f4
b8843c9
 
 
 
 
712e3af
73696f4
 
0b1c1d9
73696f4
 
0b1c1d9
 
 
712e3af
0b1c1d9
 
 
 
 
 
 
 
 
5fad7fd
0b1c1d9
 
 
 
 
 
 
712e3af
01b89ba
 
712e3af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b1c1d9
 
 
 
 
 
 
01b89ba
 
 
7bd0a5a
73696f4
712e3af
 
 
7bd0a5a
712e3af
01b89ba
b8ecb9a
 
0b1c1d9
73696f4
7bd0a5a
 
 
 
2c19098
088c386
0b1c1d9
a838e2b
 
0b1c1d9
 
 
 
 
 
4cb8223
0b1c1d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c19098
a838e2b
5983023
0b1c1d9
 
73696f4
0b1c1d9
 
 
 
a838e2b
 
 
 
 
73696f4
0b1c1d9
 
dbc8c64
 
 
 
 
 
2c19098
73696f4
1b458d1
a838e2b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionImg2ImgPipeline
import gradio as gr
import torch
from PIL import Image
import utils

is_colab = utils.is_google_colab()

class Model:
    def __init__(self, name, path, prefix):
        self.name = name
        self.path = path
        self.prefix = prefix
        self.pipe_t2i = None
        self.pipe_i2i = None

models = [
     Model("Custom model", "", ""),
     Model("Arcane", "nitrosocke/Arcane-Diffusion", "arcane style "),
     Model("Archer", "nitrosocke/archer-diffusion", "archer style "),
     Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
     Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
     Model("Modern Disney", "nitrosocke/modern-disney-diffusion", "modern disney style "),
     Model("Classic Disney", "nitrosocke/classic-anim-diffusion", ""),
     Model("Waifu", "hakurei/waifu-diffusion", ""),
     Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
     Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
     Model("Robo Diffusion", "nousr/robo-diffusion", ""),
     Model("Cyberpunk Anime", "DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style "),
     Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy")
]

last_mode = "txt2img"
current_model = models[1]
current_model_path = current_model.path

if is_colab:
  pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16)
  if torch.cuda.is_available():
    pipe = pipe.to("cuda")

else: # download all models
  vae = AutoencoderKL.from_pretrained(current_model, subfolder="vae", torch_dtype=torch.float16)
  for model in models[1:]:
    unet = UNet2DConditionModel.from_pretrained(model, subfolder="unet", torch_dtype=torch.float16)
    model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model, unet=unet, vae=vae, torch_dtype=torch.float16)
    model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model, unet=unet, vae=vae, torch_dtype=torch.float16)

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

def custom_model_changed(path):
  models[0].path = path
  global current_model
  current_model = models[0]

def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):

  global current_model
  for model in models:
    if model.name == model_name:
      current_model = model
      model_path = current_model.path

  generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None

  if img is not None:
    return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
  else:
    return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)

def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "txt2img":
        current_model_path = model_path

        if is_colab:
          pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
        else:
          pipe = pipe.to("cpu")
          pipe = current_model.pipe_t2i

        if torch.cuda.is_available():
          pipe = pipe.to("cuda")
        last_mode = "txt2img"

    prompt = current_model.prefix + prompt
    result = pipe(
      prompt,
      negative_prompt = neg_prompt,
      # num_images_per_prompt=n_images,
      num_inference_steps = int(steps),
      guidance_scale = guidance,
      width = width,
      height = height,
      generator = generator)
    
    return replace_nsfw_images(result)

def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):

    global last_mode
    global pipe
    global current_model_path
    if model_path != current_model_path or last_mode != "img2img":
        current_model_path = model_path

        if is_colab:
          pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16)
        else:
          pipe = pipe.to("cpu")
          pipe = current_model.pipe_t2i
        
        if torch.cuda.is_available():
              pipe = pipe.to("cuda")
        last_mode = "img2img"

    prompt = current_model.prefix + prompt
    ratio = min(height / img.height, width / img.width)
    img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
    result = pipe(
        prompt,
        negative_prompt = neg_prompt,
        # num_images_per_prompt=n_images,
        init_image = img,
        num_inference_steps = int(steps),
        strength = strength,
        guidance_scale = guidance,
        width = width,
        height = height,
        generator = generator)
        
    return replace_nsfw_images(result)

def replace_nsfw_images(results):
    for i in range(len(results.images)):
      if results.nsfw_content_detected[i]:
        results.images[i] = Image.open("nsfw.png")
    return results.images[0]

css = """
  <style>
  .finetuned-diffusion-div {
      text-align: center;
      max-width: 700px;
      margin: 0 auto;
    }
    .finetuned-diffusion-div div {
      display: inline-flex;
      align-items: center;
      gap: 0.8rem;
      font-size: 1.75rem;
    }
    .finetuned-diffusion-div div h1 {
      font-weight: 900;
      margin-bottom: 7px;
    }
    .finetuned-diffusion-div p {
      margin-bottom: 10px;
      font-size: 94%;
    }
    .finetuned-diffusion-div p a {
      text-decoration: underline;
    }
    .tabs {
      margin-top: 0px;
      margin-bottom: 0px;
    }
    #gallery {
      min-height: 20rem;
    }
  </style>
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        f"""
            <div class="finetuned-diffusion-div">
              <div>
                <h1>Finetuned Diffusion</h1>
              </div>
              <p>
               Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
               <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/sd-dreambooth-library/herge-style">Hergé (Tintin)</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>, <a href="https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion">Cyberpunk Anime</a> + any other custom Diffusers 🧨 SD model hosted on HuggingFace 🤗.
              </p>
              <p>Don't want to wait in queue? <a href="https://colab.research.google.com/gist/qunash/42112fb104509c24fd3aa6d1c11dd6e0/copy-of-fine-tuned-diffusion-gradio.ipynb"><img data-canonical-src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab" src="https://camo.githubusercontent.com/84f0493939e0c4de4e6dbe113251b4bfb5353e57134ffd9fcab6b8714514d4d1/68747470733a2f2f636f6c61622e72657365617263682e676f6f676c652e636f6d2f6173736574732f636f6c61622d62616467652e737667"></a></p>
               Running on <b>{device}</b>
              </p>
            </div>
        """
    )
    with gr.Row():
        
        with gr.Group():
            model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
            custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", visible=False, interactive=True)
            
            with gr.Row():
              prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
              generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))


            image_out = gr.Image(height=512)
            # gallery = gr.Gallery(
            #     label="Generated images", show_label=False, elem_id="gallery"
            # ).style(grid=[1], height="auto")

        with gr.Tab("Options"):
          with gr.Group():
            neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")

            # n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)

            with gr.Row():
              guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
              steps = gr.Slider(label="Steps", value=50, minimum=2, maximum=100, step=1)

            with gr.Row():
              width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
              height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)

            seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)

        with gr.Tab("Image to image"):
            with gr.Group():
              image = gr.Image(label="Image", height=256, tool="editor", type="pil")
              strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)

    model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_path)
    custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
    # n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)

    inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
    prompt.submit(inference, inputs=inputs, outputs=image_out)
    generate.click(inference, inputs=inputs, outputs=image_out)

    ex = gr.Examples([
        [models[1].name, "jason bateman disassembling the demon core", 7.5, 50],
        [models[4].name, "portrait of dwayne johnson", 7.0, 75],
        [models[5].name, "portrait of a beautiful alyx vance half life", 10, 50],
        [models[6].name, "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7.0, 45],
        [models[5].name, "fantasy portrait painting, digital art", 4.0, 30],
    ], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=not is_colab and torch.cuda.is_available())
    # ex.dataset.headers = [""]

    gr.Markdown('''
      Models by [@nitrosocke](https://huggingface.co/nitrosocke), [@Helixngc7293](https://twitter.com/DGSpitzer) and others. ❤️<br>
      Space by: [![Twitter Follow](https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social)](https://twitter.com/hahahahohohe)
  
      ![visitors](https://visitor-badge.glitch.me/badge?page_id=anzorq.finetuned_diffusion)
    ''')

if not is_colab:
  demo.queue(concurrency_count=4)
demo.launch(debug=is_colab, share=is_colab)