Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -64,18 +64,19 @@ if is_colab:
|
|
64 |
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
65 |
|
66 |
else: # download all models
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
if torch.cuda.is_available():
|
81 |
pipe = pipe.to("cuda")
|
@@ -130,8 +131,9 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
130 |
if is_colab or current_model == custom_model:
|
131 |
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
132 |
else:
|
133 |
-
pipe =
|
134 |
-
pipe =
|
|
|
135 |
|
136 |
if torch.cuda.is_available():
|
137 |
pipe = pipe.to("cuda")
|
@@ -163,8 +165,9 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
163 |
if is_colab or current_model == custom_model:
|
164 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
165 |
else:
|
166 |
-
pipe =
|
167 |
-
pipe =
|
|
|
168 |
|
169 |
if torch.cuda.is_available():
|
170 |
pipe = pipe.to("cuda")
|
|
|
64 |
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
65 |
|
66 |
else: # download all models
|
67 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
68 |
+
# print(f"{datetime.datetime.now()} Downloading vae...")
|
69 |
+
# vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
70 |
+
# for model in models:
|
71 |
+
# try:
|
72 |
+
# print(f"{datetime.datetime.now()} Downloading {model.name} model...")
|
73 |
+
# unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
74 |
+
# model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
75 |
+
# model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
76 |
+
# except Exception as e:
|
77 |
+
# print(f"{datetime.datetime.now()} Failed to load model " + model.name + ": " + str(e))
|
78 |
+
# models.remove(model)
|
79 |
+
# pipe = models[0].pipe_t2i
|
80 |
|
81 |
if torch.cuda.is_available():
|
82 |
pipe = pipe.to("cuda")
|
|
|
131 |
if is_colab or current_model == custom_model:
|
132 |
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
133 |
else:
|
134 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
135 |
+
# pipe = pipe.to("cpu")
|
136 |
+
# pipe = current_model.pipe_t2i
|
137 |
|
138 |
if torch.cuda.is_available():
|
139 |
pipe = pipe.to("cuda")
|
|
|
165 |
if is_colab or current_model == custom_model:
|
166 |
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
167 |
else:
|
168 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler, safety_checker=lambda images, clip_input: (images, False))
|
169 |
+
# pipe = pipe.to("cpu")
|
170 |
+
# pipe = current_model.pipe_i2i
|
171 |
|
172 |
if torch.cuda.is_available():
|
173 |
pipe = pipe.to("cuda")
|