Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -27,10 +27,11 @@ reverse_pattern = re.compile('|'.join(re.escape(key) for key in reverse_replacem
|
|
27 |
def replace_symbols_back(text):
|
28 |
return reverse_pattern.sub(lambda match: reverse_replacements[match.group(0)], text)
|
29 |
|
30 |
-
def preprocess_audio(audio_tensor, original_sample_rate):
|
31 |
audio_tensor = audio_tensor.to(dtype=torch.float32)
|
32 |
audio_tensor = torch.mean(audio_tensor, dim=0, keepdim=True) # Convert to mono
|
33 |
-
|
|
|
34 |
audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=original_sample_rate, new_freq=16000) # Resample
|
35 |
return audio_tensor
|
36 |
|
@@ -48,7 +49,7 @@ def transcribe_speech(audio, progress=gr.Progress()):
|
|
48 |
transcription = pipe(audio_np, chunk_length_s=10)['text']
|
49 |
return replace_symbols_back(transcription)
|
50 |
|
51 |
-
def transcribe_from_youtube(url,
|
52 |
progress(0, "Downloading YouTube audio...")
|
53 |
|
54 |
yt = YouTube(url)
|
@@ -59,9 +60,9 @@ def transcribe_from_youtube(url, apply_improvements, progress=gr.Progress()):
|
|
59 |
|
60 |
try:
|
61 |
audio, original_sample_rate = torchaudio.load(audio_data)
|
62 |
-
audio = preprocess_audio(audio, original_sample_rate)
|
63 |
|
64 |
-
if
|
65 |
progress(0.4, "Applying Wiener filter...")
|
66 |
audio = apply_wiener_filter(audio)
|
67 |
|
@@ -101,7 +102,10 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
101 |
with gr.Tab("YouTube URL"):
|
102 |
gr.Markdown("## Transcribe speech from YouTube video")
|
103 |
youtube_url = gr.Textbox(label="Enter YouTube video URL")
|
104 |
-
|
|
|
|
|
|
|
105 |
|
106 |
with gr.Row():
|
107 |
img = gr.Image(label="Thumbnail", height=240, width=240, scale=1)
|
@@ -110,7 +114,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
110 |
transcribe_button = gr.Button("Transcribe")
|
111 |
transcription_output = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10)
|
112 |
|
113 |
-
transcribe_button.click(fn=transcribe_from_youtube, inputs=[youtube_url,
|
114 |
youtube_url.change(populate_metadata, inputs=[youtube_url], outputs=[img, title])
|
115 |
|
116 |
demo.launch()
|
|
|
27 |
def replace_symbols_back(text):
|
28 |
return reverse_pattern.sub(lambda match: reverse_replacements[match.group(0)], text)
|
29 |
|
30 |
+
def preprocess_audio(audio_tensor, original_sample_rate, apply_normalization):
|
31 |
audio_tensor = audio_tensor.to(dtype=torch.float32)
|
32 |
audio_tensor = torch.mean(audio_tensor, dim=0, keepdim=True) # Convert to mono
|
33 |
+
if apply_normalization:
|
34 |
+
audio_tensor = audio_tensor / torch.max(torch.abs(audio_tensor)) # Normalize
|
35 |
audio_tensor = torchaudio.functional.resample(audio_tensor, orig_freq=original_sample_rate, new_freq=16000) # Resample
|
36 |
return audio_tensor
|
37 |
|
|
|
49 |
transcription = pipe(audio_np, chunk_length_s=10)['text']
|
50 |
return replace_symbols_back(transcription)
|
51 |
|
52 |
+
def transcribe_from_youtube(url, apply_wiener, apply_normalization, progress=gr.Progress()):
|
53 |
progress(0, "Downloading YouTube audio...")
|
54 |
|
55 |
yt = YouTube(url)
|
|
|
60 |
|
61 |
try:
|
62 |
audio, original_sample_rate = torchaudio.load(audio_data)
|
63 |
+
audio = preprocess_audio(audio, original_sample_rate, apply_normalization)
|
64 |
|
65 |
+
if apply_wiener:
|
66 |
progress(0.4, "Applying Wiener filter...")
|
67 |
audio = apply_wiener_filter(audio)
|
68 |
|
|
|
102 |
with gr.Tab("YouTube URL"):
|
103 |
gr.Markdown("## Transcribe speech from YouTube video")
|
104 |
youtube_url = gr.Textbox(label="Enter YouTube video URL")
|
105 |
+
|
106 |
+
with gr.Accordion("Audio Improvements", open=False):
|
107 |
+
apply_wiener = gr.Checkbox(label="Apply Wiener Filter", info="Reduce noise", value=False)
|
108 |
+
apply_normalization = gr.Checkbox(label="Apply Normalization", info="Normalize audio volume", value=True)
|
109 |
|
110 |
with gr.Row():
|
111 |
img = gr.Image(label="Thumbnail", height=240, width=240, scale=1)
|
|
|
114 |
transcribe_button = gr.Button("Transcribe")
|
115 |
transcription_output = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=10)
|
116 |
|
117 |
+
transcribe_button.click(fn=transcribe_from_youtube, inputs=[youtube_url, apply_wiener, apply_normalization], outputs=transcription_output)
|
118 |
youtube_url.change(populate_metadata, inputs=[youtube_url], outputs=[img, title])
|
119 |
|
120 |
demo.launch()
|