Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -51,32 +51,22 @@ def wiener_filter(audio_tensor):
|
|
51 |
return torch.tensor(filtered_audio, dtype=audio_tensor.dtype)
|
52 |
|
53 |
@spaces.GPU
|
54 |
-
def transcribe_speech(
|
55 |
-
if
|
56 |
return "No audio received.", None
|
57 |
|
58 |
progress(0.1, desc="Preprocessing audio...")
|
59 |
-
audio_tensor, original_sample_rate = torchaudio.load(
|
60 |
audio_tensor = preprocess_audio(audio_tensor, original_sample_rate, apply_normalization)
|
61 |
|
62 |
-
if apply_wiener_filter:
|
63 |
-
progress(0.3, desc="Applying Wiener filter...")
|
64 |
-
audio_tensor = wiener_filter(audio_tensor)
|
65 |
-
|
66 |
-
if apply_spectral_gating:
|
67 |
-
progress(0.5, desc="Applying Spectral Gating filter...")
|
68 |
-
audio_tensor = spectral_gating(audio_tensor)
|
69 |
-
|
70 |
progress(0.7, desc="Transcribing audio...")
|
71 |
audio_np = audio_tensor.numpy().squeeze()
|
72 |
transcription = pipe(audio_np, chunk_length_s=10)['text']
|
73 |
transcription = replace_symbols_back(transcription)
|
74 |
|
75 |
-
|
76 |
-
sf.write("temp_audio.wav", audio_np, 16000, subtype='PCM_16')
|
77 |
-
|
78 |
-
return transcription, "temp_audio.wav"
|
79 |
|
|
|
80 |
def transcribe_from_youtube(url, apply_wiener_filter, apply_normalization, apply_spectral_gating, progress=gr.Progress()):
|
81 |
progress(0, "Downloading YouTube audio...")
|
82 |
|
@@ -95,10 +85,13 @@ def transcribe_from_youtube(url, apply_wiener_filter, apply_normalization, apply
|
|
95 |
audio_tensor = wiener_filter(audio_tensor)
|
96 |
|
97 |
if apply_spectral_gating:
|
98 |
-
progress(0.
|
99 |
audio_tensor = spectral_gating(audio_tensor)
|
100 |
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
audio_np = audio_tensor.numpy().squeeze()
|
104 |
sf.write("temp_audio.wav", audio_np, 16000, subtype='PCM_16')
|
@@ -106,7 +99,7 @@ def transcribe_from_youtube(url, apply_wiener_filter, apply_normalization, apply
|
|
106 |
except Exception as e:
|
107 |
return str(e), None
|
108 |
|
109 |
-
return transcription, "temp_audio.wav"
|
110 |
|
111 |
def populate_metadata(url):
|
112 |
yt = YouTube(url)
|
@@ -131,9 +124,8 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
131 |
mic_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label="Record or upload an audio")
|
132 |
transcribe_button = gr.Button("Transcribe")
|
133 |
transcription_output = gr.Textbox(label="Transcription")
|
134 |
-
audio_output = gr.Audio(label="Processed Audio")
|
135 |
|
136 |
-
transcribe_button.click(fn=transcribe_speech, inputs=[mic_audio], outputs=[transcription_output
|
137 |
|
138 |
with gr.Tab("YouTube URL"):
|
139 |
gr.Markdown("## Transcribe speech from YouTube video")
|
|
|
51 |
return torch.tensor(filtered_audio, dtype=audio_tensor.dtype)
|
52 |
|
53 |
@spaces.GPU
|
54 |
+
def transcribe_speech(audio_path, progress=gr.Progress()):
|
55 |
+
if audio_path is None:
|
56 |
return "No audio received.", None
|
57 |
|
58 |
progress(0.1, desc="Preprocessing audio...")
|
59 |
+
audio_tensor, original_sample_rate = torchaudio.load(audio_path)
|
60 |
audio_tensor = preprocess_audio(audio_tensor, original_sample_rate, apply_normalization)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
progress(0.7, desc="Transcribing audio...")
|
63 |
audio_np = audio_tensor.numpy().squeeze()
|
64 |
transcription = pipe(audio_np, chunk_length_s=10)['text']
|
65 |
transcription = replace_symbols_back(transcription)
|
66 |
|
67 |
+
return transcription
|
|
|
|
|
|
|
68 |
|
69 |
+
@spaces.GPU
|
70 |
def transcribe_from_youtube(url, apply_wiener_filter, apply_normalization, apply_spectral_gating, progress=gr.Progress()):
|
71 |
progress(0, "Downloading YouTube audio...")
|
72 |
|
|
|
85 |
audio_tensor = wiener_filter(audio_tensor)
|
86 |
|
87 |
if apply_spectral_gating:
|
88 |
+
progress(0.6, "Applying Spectral Gating filter...")
|
89 |
audio_tensor = spectral_gating(audio_tensor)
|
90 |
|
91 |
+
progress(0.8, "Transcribing audio...")
|
92 |
+
audio_np = audio_tensor.numpy().squeeze()
|
93 |
+
transcription = pipe(audio_np, chunk_length_s=10)['text']
|
94 |
+
transcription = replace_symbols_back(transcription)
|
95 |
|
96 |
audio_np = audio_tensor.numpy().squeeze()
|
97 |
sf.write("temp_audio.wav", audio_np, 16000, subtype='PCM_16')
|
|
|
99 |
except Exception as e:
|
100 |
return str(e), None
|
101 |
|
102 |
+
return transcription, "temp_audio.wav"
|
103 |
|
104 |
def populate_metadata(url):
|
105 |
yt = YouTube(url)
|
|
|
124 |
mic_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label="Record or upload an audio")
|
125 |
transcribe_button = gr.Button("Transcribe")
|
126 |
transcription_output = gr.Textbox(label="Transcription")
|
|
|
127 |
|
128 |
+
transcribe_button.click(fn=transcribe_speech, inputs=[mic_audio], outputs=[transcription_output])
|
129 |
|
130 |
with gr.Tab("YouTube URL"):
|
131 |
gr.Markdown("## Transcribe speech from YouTube video")
|