xxxxxx commited on
Commit
b190df6
·
1 Parent(s): 2cdac3e
Files changed (2) hide show
  1. app.py +21 -17
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,24 +1,28 @@
1
- import gradio as gr
2
  from transformers import pipeline
3
 
4
  # 加载中文垃圾邮件分类器
5
- classifier = pipeline("text-classification", model="app-x/chinese_spam_classifier")
 
 
6
 
7
- def classify_text(text):
8
- result = classifier(text)[0]
9
- label = "垃圾邮件" if result["label"] == "LABEL_1" else "正常邮件"
10
- confidence = result["score"]
11
- return f"{label} (置信度: {confidence:.2f})"
12
 
13
- # 创建 Gradio 界面
14
- iface = gr.Interface(
15
- fn=classify_text,
16
- inputs=gr.Textbox(lines=5, placeholder="请输入中文文本..."),
17
- outputs="text",
18
- title="中文垃圾邮件分类器",
19
- description="使用 app-x/chinese_spam_classifier 模型进行中文文本的垃圾邮件分类。"
20
- )
21
 
22
- # 启动应用
23
- iface.launch()
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
  from transformers import pipeline
3
 
4
  # 加载中文垃圾邮件分类器
5
+ @st.cache_resource
6
+ def load_classifier():
7
+ return pipeline("text-classification", model="app-x/chinese_spam_classifier")
8
 
9
+ classifier = load_classifier()
 
 
 
 
10
 
11
+ st.title("中文垃圾信息分类器")
12
+ st.write("使用 app-x/chinese_spam_classifier 模型进行中文文本的垃圾信息分类。")
 
 
 
 
 
 
13
 
14
+ # 创建文本输入框
15
+ text_input = st.text_area("请输入中文文本:", height=150)
16
 
17
+ if st.button("分类"):
18
+ if text_input:
19
+ # 进行分类
20
+ result = classifier(text_input)[0]
21
+ label = "垃圾信息" if result["label"] == "LABEL_1" else "正常信息"
22
+ confidence = result["score"]
23
+
24
+ # 显示结果
25
+ st.write(f"分类结果: {label}")
26
+ st.write(f"置信度: {confidence:.2f}")
27
+ else:
28
+ st.warning("请输入文本后再进行分类。")
requirements.txt CHANGED
@@ -1,4 +1,5 @@
1
- gradio
2
  transformers
3
  torch
4
 
 
 
1
+ streamlit
2
  transformers
3
  torch
4
 
5
+