Spaces:
Sleeping
Sleeping
File size: 11,839 Bytes
6855b1e 96166e4 6855b1e 96166e4 6855b1e 96166e4 6855b1e 96166e4 6855b1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import json
import linecache
import logging
import os
import re
import traceback
import tracemalloc
import nltk
import openai
# from tenacity import (retry,stop_after_attempt,stop_after_delay, wait_random_exponential)
from tenacity import *
# from agents.utils import read_file
from utils import read_file
logger = logging.getLogger("agent_logger")
openai.api_key = os.getenv('gpt_api_key')
# paid and ad free
google_key = os.getenv("google_search_api_key")
# cx: The identifier of the Programmable Search Engine.
google_cx = os.getenv("google_cx_api_key")
GOOGLE = "google"
USER = "user"
ASSISTANT = "assistant"
MODEL = "gpt-3.5-turbo"
sites = {} # initialize dictionary or sites used
new_sites = {} # initialize dictionary or sites used
try:
with open("sites", "r") as f:
sites = json.loads(f.read())
except:
print("Failed to read sites.")
# for experimenting with Vicuna
def display_top(snapshot, key_type="lineno", limit=10):
snapshot = snapshot.filter_traces(
(
tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<unknown>"),
)
)
top_stats = snapshot.statistics(key_type)
logger.info("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):
frame = stat.traceback[0]
logger.info(
"#%s: %s:%s: %.1f KiB"
% (index, frame.filename, frame.lineno, stat.size / 1024)
)
line = linecache.getline(frame.filename, frame.lineno).strip()
if line:
logger.info(" %s" % line)
other = top_stats[limit:]
if other:
size = sum(stat.size for stat in other)
logger.info("%s other: %.1f KiB" % (len(other), size / 1024))
total = sum(stat.size for stat in top_stats)
logger.info("Total allocated size: %.1f KiB" % (total / 1024))
class turn:
def __init__(self, role="assistant", message="", tldr="", source="", keywords=[]):
self.role = role
self.message = message
self.tldr = tldr
self.source = source
self.keywords = keywords
def __str__(self):
s = ""
if self.role is not None and len(self.role) > 0:
s = s + "r: " + self.role
if self.message is not None and len(self.message) > 0:
s = s + " m: " + self.message
if self.source is not None and len(self.source) > 0:
s = s + " s: " + self.source
if self.tldr is not None and len(self.tldr) > 0:
s = s + "tldr: " + self.tldr
return s
def is_google_turn(self):
return self.source is not None and self.source == GOOGLE
def is_user_turn(self):
return self.source is not None and self.source == USER
def is_assistant_turn(self):
return self.source is not None and self.source == ASSISTANT
# @retry(wait=wait_random_exponential(min=1, max=2), stop=(stop_after_delay(15) | stop_after_attempt(2)))
def chatCompletion_with_backoff(**kwargs):
return openai.ChatCompletion.create(**kwargs)
def ask_gpt(model, gpt_message, max_tokens, temp, top_p):
completion = None
try:
completion = openai.chat.completions.create(
model=model,
messages=gpt_message,
max_tokens=max_tokens,
temperature=temp,
top_p=top_p,
)
except:
traceback.print_exc()
if completion is not None:
response = completion.choices[0].message.content.lstrip(" ,:.")
logger.info(response)
return response
else:
logger.info("no response")
return None
def ask_gpt_with_retries(model, gpt_message, tokens, temp, timeout, tries):
retryer = Retrying(stop=(stop_after_delay(timeout) | stop_after_attempt(1)))
r = retryer(
ask_gpt,
model=model,
gpt_message=gpt_message,
max_tokens=tokens,
temp=temp,
top_p=1,
)
return r
INFORMATION_QUERY = "information query"
INTENTS = []
def find_intent(response):
global INTENTS, INFORMATION_QUERY
for intent in INTENTS:
if intent in response.lower():
return intent
return INFORMATION_QUERY
def find_query(response):
search_query_phrase = response
phrase_index = response.lower().find("phrase:")
quoted_strings = []
if phrase_index < 0:
phrase_index = 0
else:
phrase_index += len("phrase:")
quoted_strings = re.findall(r'"([^"]*)"', search_query_phrase[phrase_index:])
if len(quoted_strings) == 0:
quoted_strings = re.findall(r"'([^']*)'", search_query_phrase[phrase_index:])
if len(quoted_strings) > 0:
# logger.info(quoted_strings)
phrase = quoted_strings[0]
return phrase, response[response.find(phrase) + len(phrase) + 1:]
else:
logger.info("no quoted text, returning original query string", response)
# logger.info(response)
return "", response
def find_keywords(response, query_phrase, orig_phrase):
# keywords includes those suggested by gpt and any remaining words from query phrase len > 4
keywords = []
quoted_strings = re.findall(r'"([^"]*)"', query_phrase)
quoted_strings2 = re.findall(r'"([^"]*)"', orig_phrase)
remainder = query_phrase
k_index = response.lower().find("keyword")
if k_index > 0:
keyword_string = response[k_index + len("keyword"):]
nm_index = keyword_string.find("Named-Entities:")
if nm_index > 0:
keyword_string = keyword_string[:nm_index].rstrip()
# logger.info(keyword_string)
c_index = keyword_string.find(":")
keyword_string = keyword_string[c_index + 1:]
candidates = keyword_string.split(",")
for keyword in candidates:
keyword = keyword.strip(":,.\t\n").lstrip(" ")
if len(keyword) > 3 or keyword[0:1].isupper():
keywords.append(keyword)
return keywords
return ""
# don't know why this compilation error doesn't throw errors at runtime, but it doesn't, on the other hand trying to
# fix this creates an infinite import loop, so don't touch this.
def split_interaction(interaction):
qs = interaction.find(prefix)
rs = interaction.find(suffix)
if qs >= 0 and rs >= 0:
query = interaction[len(prefix): rs].lstrip()
response = interaction[rs + len(suffix):].lstrip()
return query, response
else:
logger.info("can't parse", interaction)
return "", ""
def findnth(haystack, needle, n):
parts = haystack.split(needle, n + 1)
if len(parts) <= n + 1:
return -1
return len(haystack) - len(parts[-1]) - len(needle)
def extract_site(url):
site = ""
base = findnth(url, "/", 2)
if base > 2:
site = url[:base].split(".")
if len(site) > 1:
site = site[-2]
site = site.replace("https://", "")
site = site.replace("http://", "")
return site
def extract_domain(url):
site = ""
base = findnth(url, "/", 2)
if base > 2:
domain = url[:base].split(".")
if len(domain) > 1:
domain = domain[-2] + "." + domain[-1]
domain = domain.replace("https://", "")
domain = domain.replace("http://", "")
return domain
def part_of_keyword(word, keywords):
for keyword in keywords:
if word in keyword:
return True
return False
keyword_prompt = 'Perform two tasks on the following text. First, rewrite the <text> as an effective google search phrase. Second, analyze text and list keywords and named-entities found. Return the result as: Phrase: "<google search phrase>"\nKeywords: <list of keywords>\nNamed-Entities: <list of Named-Entities>'
def get_search_phrase_and_keywords(query_string, chat_history):
gpt_message = [
{"role": "user", "content": keyword_prompt},
{"role": "user", "content": "Text\n" + query_string},
{"role": "assistant", "content": "Phrase:"},
]
response_text = ""
completion = None
# for role in gpt_message:
# logger.info(role)
# logger.info()
response_text = ask_gpt_with_retries(
"gpt-3.5-turbo", gpt_message, tokens=150, temp=0.3, timeout=6, tries=2
)
logger.info(response_text)
# useful function to make search query more optimal, for future explainability studies
# consider returning query phrase and keywords to user
query_phrase, remainder = find_query(response_text)
logger.info("PHRASE:" + query_phrase)
# logger.info(remainder)
keywords = find_keywords(remainder, query_phrase, query_string)
logger.info("KEYWORDS:" + ''.join(keywords))
return query_phrase, keywords
def reform(elements):
# reformulates text extracted from a webpage by unstructured.partition_html into larger keyword-rankable chunks
texts = (
[]
) # a list of text_strings, each of at most *max* chars, separated on '\n' when splitting an element is needed
paragraphs = []
total_elem_len = 0
for element in elements:
text = str(element)
total_elem_len += len(text)
if len(text) < 4:
continue
elif len(text) < 500:
texts.append(text)
else:
subtexts = text.split("\n")
for subtext in subtexts:
if len(subtext) < 500:
texts.append(subtext)
else:
texts.extend(nltk.sent_tokenize(subtext))
# now reassemble shorter texts into chunks
paragraph = ""
total_pp_len = 0
for text in texts:
if len(text) + len(paragraph) < 500:
paragraph += " " + text
else:
if len(paragraph) > 0: # start a new paragraph
paragraphs.append(paragraph)
paragraph = ""
paragraph += text
if len(paragraph) > 0:
paragraphs.append(paragraph + ".\n")
# logger.info(f'\n***** reform elements in {len(elements)}, paragraphs out {len(paragraphs)}')
total_pp_len = 0
for paragraph in paragraphs:
total_pp_len += len(paragraph)
if total_pp_len > 1.2 * total_elem_len:
logger.info(
f"******** reform out > reform in. out: {total_pp_len}, in: {total_elem_len}"
)
return paragraphs
def get_actions(text):
# look for actions in response
action_indecies = re.finditer("Action:", text) # Action: [search, ask} (query)
actions = []
editted_response = text
for action_index in action_indecies:
action = text[action_index.span()[1]:]
agent = None
query = None
query_start = action.find("(")
if query_start > 0:
agent = action[:query_start].strip()
query_end = action[query_start + 1:].find(")")
if query_end > 0:
query = action[query_start + 1: query_start + 1 + query_end]
action = text[
action_index.start(): action_index.span()[1]
+ action_index.start()
+ query_start
+ query_end
+ 2
]
if agent is None or query is None:
logger.info(
"can't parse action, skipping",
text[action_index.start(): action_index.start() + 48],
)
continue
actions.append([agent, query, action])
editted_response = editted_response.replace(action, "")
return actions
if __name__ == "__main__":
get_search_phrase_and_keywords(
"Would I like the video game Forspoken, given that I like Final Fantasy VII?",
[],
)
# logger.info(query_vicuna("what is 5 * 3?"))
|