Spaces:
Sleeping
Sleeping
File size: 9,167 Bytes
6855b1e 778b5c1 6855b1e 44255d1 6855b1e f096f8f bcae708 6855b1e e750b39 6855b1e d1ac8cf 906b1c0 6855b1e d1ac8cf 6855b1e d1ac8cf 6855b1e d1ac8cf 6855b1e 1aca16d 6855b1e a95eca6 bcae708 d1ac8cf bcae708 911812d 6855b1e d1ac8cf 6855b1e d1ac8cf 6855b1e 906b1c0 6855b1e d1ac8cf 6855b1e f096f8f d1ac8cf 6855b1e 906b1c0 6855b1e d1ac8cf 6855b1e d1ac8cf 6855b1e d1ac8cf 6855b1e 79b0d24 6855b1e d1ac8cf 6855b1e d1ac8cf 6855b1e d1ac8cf 6855b1e 79b0d24 6855b1e 906b1c0 d1ac8cf 6855b1e 906b1c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import copy
import json
import logging
import os
import time
import traceback
import urllib.parse as en
import warnings
from itertools import zip_longest
import requests
from unstructured.partition.html import partition_html
from zenrows import ZenRowsClient
from llmsearch import site_stats
# this import style works in pycharm
from llmsearch import utilityV2 as ut
# this import style works on sever + vs code
# import utils
# from llmsearch import google_search_concurrent as gs
# from llmsearch import meta as mt
# from llmsearch import utilityV2 as ut
logger = logging.getLogger("agent_logger")
# todo drop blocked pages > see og llmsearch code
# todo use the chatcondesemode query instead of the new gpt query
def search(msg, query_phrase):
try:
# this call extracts keywords from the statement and rewrites it into a better search phrase with gpt3.5
# query_phrase, keywords = ut.get_search_phrase_and_keywords(msg, [])
google_text = ""
try:
print(f"asking google {msg}; rephrased: {query_phrase}")
google_text, urls_all, urls_used, tried_index, urls_tried = search_google(msg, query_phrase)
except:
traceback.print_exc()
print("\n\nFinal response: ")
for item in google_text:
print(
f"\n##############################################################################################\nSource: {item['source']}"
)
print(f"{item['text']}")
print(f"URL: {item['url']}")
return google_text
except KeyboardInterrupt:
traceback.print_exc()
raise KeyboardInterrupt
except:
traceback.print_exc()
return ""
# Define a function to make a single URL request and process the response
def process_url(url):
start_time = time.time()
site = ut.extract_site(url)
result = ""
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore")
result = ""
try:
client = ZenRowsClient(os.getenv('zenrows_api_key'))
response = client.get(url)
print(f'got response, status: {response.status_code}')
result = response.text
except Exception:
traceback.print_exc()
return "", url
except Exception:
traceback.print_exc()
print(f"{site} err")
pass
print(f"Processed {site}: {len(response.text)} / {len(result)} {int((time.time() - start_time) * 1000)} ms")
return result, url
def process_urls(urls):
# Create a ThreadPoolExecutor with 5 worker threads
response = []
print("entering process urls")
full_text = ""
used_index = 0
urls_used = ["" for i in range(30)]
tried_index = 0
urls_tried = ["" for i in range(30)]
start_time = time.time()
in_process = []
try:
while (len(urls) > 0
# no sense starting if not much time left
and (len(full_text) < 4800 and len(in_process) < 10 and time.time() - start_time < 8)
):
recommendation = site_stats.get_next(urls, sample_unknown=True)
# set timeout so we don't wait for a slow site forever
timeout = 12 - int(time.time() - start_time)
url = recommendation[1]
result, url = process_url(url)
urls_tried[tried_index] = url
tried_index += 1
urls.remove(url)
print(f"queued {ut.extract_site(url)}, {timeout}")
if len(result) > 0:
urls_used[used_index] = url
used_index += 1
print(
f"adding {len(result)} chars from {ut.extract_site(url)} to {len(response)} prior responses"
)
if "an error has occurred" not in result.lower() and "permission to view this page" not in result.lower() and "403 ERROR" not in result.lower() and "have been blocked" not in result.lower() and "too many requests" not in result.lower():
response.append(
{
"source": ut.extract_domain(url),
"url": url,
"text": result,
}
)
if (len(urls) == 0 and len(in_process) == 0) or (time.time() - start_time > 28):
print(
f"n****** exiting process urls early {len(response)} {int(time.time() - start_time)} secs\n"
)
return response, used_index, urls_used, tried_index, urls_tried
except:
traceback.print_exc()
print(
f"\n*****processed all urls {len(response)} {int(time.time() - start_time)} secs"
)
return response, urls_used, tried_index, urls_tried
def extract_subtext(text):
return ut.reform(text)
def request_google(query_phrase):
print(f"***** search {query_phrase}")
sort = "&sort=date-sdate:d:w"
if "today" in query_phrase or "latest" in query_phrase:
sort = "&sort=date-sdate:d:s"
print(f"search for: {query_phrase}")
google_query = en.quote(query_phrase)
response = []
try:
start_wall_time = time.time()
url = (
"https://www.googleapis.com/customsearch/v1?key="
+ ut.google_key
+ "&cx="
+ ut.google_cx
+ "&num=4"
+ sort
+ "&q="
+ google_query
)
response = requests.get(url)
response_json = json.loads(response.text)
print(f"***** google search {int((time.time() - start_wall_time) * 10) / 10} sec")
except:
traceback.print_exc()
return []
# see if we got anything useful from Google
if "items" not in response_json.keys():
print("no return from google ...", response, response_json.keys())
return []
urls = []
for i in range(len(response_json["items"])):
url = response_json["items"][i]["link"].lstrip().rstrip()
site = ut.extract_site(url)
if site not in ut.sites or ut.sites[site] == 1:
# don't use these sources (reddit because it blocks bots)
if "reddit" not in url and "youtube" not in url and "facebook" not in url:
urls.append(url)
return urls
# def response_text_extract(url, response):
# extract_text = ""
# if url.endswith("pdf"):
# pass
# else:
# if response is not None:
# elements = partition_html(text=response)
# str_elements = []
# logger.info('\n***** elements')
# for e in elements:
# stre = str(e).replace(" ", " ")
# str_elements.append(stre)
# extract_text = ''.join(extract_subtext(str_elements))
# logger.info(
# f"***** unstructured found {len(elements)} elements, {sum([len(str(e)) for e in elements])} raw chars, {len(extract_text)} extract"
# )
#
# if len(extract_text.strip()) < 8:
# return ""
# else:
# return extract_text
# def extract_items_from_numbered_list(text):
# items = ""
# elements = text.split("\n")
# for candidate in elements:
# candidate = candidate.lstrip(". \t")
# if len(candidate) > 4 and candidate[0].isdigit():
# candidate = candidate[1:].lstrip(". ")
# if (
# len(candidate) > 4 and candidate[0].isdigit()
# ): # strip second digit if more than 10 items
# candidate = candidate[1:].lstrip(". ")
# logger.info("E {}".format(candidate))
# items += candidate + " "
# return items
def search_google(original_query, query_phrase):
all_urls = []
urls_used = []
urls_tried = []
tried_index = 0
full_text = ""
try: # query google for recent info
orig_phrase_urls = []
if len(original_query) > 0:
orig_phrase_urls = request_google(original_query[: min(len(original_query), 128)])
gpt_phrase_urls = []
if len(query_phrase) > 0:
gpt_phrase_urls = request_google(query_phrase)
if len(orig_phrase_urls) == 0 and len(gpt_phrase_urls) == 0:
return "", [], 0, [""], 0, [""]
for url in orig_phrase_urls:
if url in gpt_phrase_urls:
gpt_phrase_urls.remove(url)
# interleave both lists now that duplicates are removed
urls = [
val
for tup in zip_longest(orig_phrase_urls, gpt_phrase_urls)
for val in tup
if val is not None
]
all_urls = copy.deepcopy(urls)
# initialize scan of Google urls
start_wall_time = time.time()
full_text, urls_used, tried_index, urls_tried = process_urls(all_urls)
print(f"***** urls_processed {int((time.time() - start_wall_time) * 10) / 10} sec")
print("return from url processsing")
except:
traceback.print_exc()
return full_text, all_urls, urls_used, tried_index, urls_tried
|