Spaces:
Sleeping
Sleeping
import logging | |
import os | |
from time import asctime | |
import gradio as gr | |
from llama_index.core import Document, VectorStoreIndex | |
from generate_response import generate_chat_response_with_history, set_llm, is_search_query, condense_question, \ | |
generate_chat_response_with_history_rag_return_response | |
from web_search import search | |
API_KEY_PATH = "../keys/gpt_api_key.txt" | |
logger = logging.getLogger("agent_logger") | |
sourced = False | |
query = False | |
rag_similarity = False | |
def google_search_chat(message, history): | |
condensed_question = condense_question(message, history) | |
if is_search_query(condensed_question): | |
search_results = search(message, condensed_question) | |
relevant_content = "" | |
sources = "" | |
for index, result in enumerate(search_results): | |
relevant_content = relevant_content + "\n" + ''.join(result['text']) | |
sources = sources + f'\n {index + 1}. ' + result['url'] # python is zero-indexed | |
if relevant_content != "": | |
documents = [Document(text=relevant_content)] | |
index = VectorStoreIndex.from_documents(documents) | |
response = generate_chat_response_with_history_rag_return_response(index, message, history) | |
# similar_str = "not calculated" | |
# faithfulness_str = "not calculated" | |
# | |
# if rag_similarity: | |
# sim_evaluator = SemanticSimilarityEvaluator() | |
# faith_evaluator = FaithfulnessEvaluator(llm=get_llm()) | |
# # condensed_context = condense_context(relevant_content) | |
# # logger.info("Calculating similarity...") | |
# # similar = sim_evaluator.evaluate(response=str(response), | |
# # reference=condensed_context) | |
# logger.info("Calculating faithfulness...") | |
# faithfulness = faith_evaluator.evaluate_response(query=condensed_question, response=response) | |
# # similar_str = str(round((similar.score * 100), 2)) + "%" | |
# faithfulness_str = "Yes" if faithfulness.passing else "No" | |
# | |
# logger.info(f'**Search Query:** {condensed_question} \n **Faithfulness:** {faithfulness_str} \n ' | |
# f'**Similarity:** {similar_str} \n **Sources used:** \n {sources}') | |
response_text = [] | |
string_output = "" | |
for text in response.response_gen: | |
response_text.append(text) | |
string_output = ''.join(response_text) | |
yield string_output | |
# if not sourced: | |
# pass | |
# if sourced and not query and not rag_similarity: | |
# yield string_output + f'\n\n --- \n **Sources used:** \n {sources}' | |
# if sourced and query and not rag_similarity: | |
# yield (string_output | |
# + f'\n\n --- \n **Search Query:** {condensed_question} ' | |
# f'\n **Sources used:** \n {sources}') | |
# if rag_similarity: | |
# yield (string_output | |
# + f'\n\n --- \n **Search Query:** {condensed_question} \n ' | |
# # f'**Similarity of response to the sources [ℹ️]' | |
# # f'(https://en.wikipedia.org/wiki/Semantic_similarity):** {similar_str} \n' | |
# f'**Is response in source documents?**: {faithfulness_str}' | |
# f'\n **Sources used:** \n {sources}') | |
logger.info(f'Assistant Response: {string_output}') | |
else: | |
logger.info( | |
f'Assistant Response: Sorry, no search results found.') | |
yield "Sorry, no search results found." | |
else: | |
yield from generate_chat_response_with_history(message, history) | |
if __name__ == '__main__': | |
logging.root.setLevel(logging.INFO) | |
filehandler = logging.FileHandler(f'agent_log_{asctime().replace(" ", "").lower().replace(":", "")}.log', | |
'a') | |
formatter = logging.Formatter('%(asctime)-15s::%(levelname)s::%(filename)s::%(funcName)s::%(lineno)d::%(message)s') | |
filehandler.setFormatter(formatter) | |
logger = logging.getLogger("agent_logger") | |
for hdlr in logger.handlers[:]: # remove the existing file handlers | |
if isinstance(hdlr, logging.FileHandler): | |
logger.removeHandler(hdlr) | |
logger.addHandler(filehandler) # set the new handler | |
logger.setLevel(logging.INFO) | |
api_key = os.getenv('gpt_api_key') | |
# GPT - 4 Turbo. The latest GPT - 4 model intended to reduce cases of “laziness” where the model doesn’t complete | |
# a task. Returns a maximum of 4,096 output tokens. Link: | |
# https://openai.com/blog/new-embedding-models-and-api-updates | |
set_llm(key=api_key, model="gpt-4-0125-preview", temperature=0) | |
logger.info("Launching Gradio ChatInterface for searchbot...") | |
demo = gr.ChatInterface(fn=google_search_chat, | |
title="Search Assistant", retry_btn=None, undo_btn=None, clear_btn=None, | |
theme="soft") | |
demo.launch(auth=('convo', 'session2024')) | |