import logging import os from time import asctime import gradio as gr from llama_index.core import Document, VectorStoreIndex from generate_response import generate_chat_response_with_history, set_llm, is_search_query, condense_question, \ generate_chat_response_with_history_rag_return_response from web_search import search API_KEY_PATH = "../keys/gpt_api_key.txt" logger = logging.getLogger("agent_logger") sourced = False query = False rag_similarity = False def google_search_chat(message, history): condensed_question = condense_question(message, history) if is_search_query(condensed_question): search_results = search(message, condensed_question) relevant_content = "" sources = "" for index, result in enumerate(search_results): relevant_content = relevant_content + "\n" + ''.join(result['text']) sources = sources + f'\n {index + 1}. ' + result['url'] # python is zero-indexed if relevant_content != "": documents = [Document(text=relevant_content)] index = VectorStoreIndex.from_documents(documents) response = generate_chat_response_with_history_rag_return_response(index, message, history) # similar_str = "not calculated" # faithfulness_str = "not calculated" # # if rag_similarity: # sim_evaluator = SemanticSimilarityEvaluator() # faith_evaluator = FaithfulnessEvaluator(llm=get_llm()) # # condensed_context = condense_context(relevant_content) # # logger.info("Calculating similarity...") # # similar = sim_evaluator.evaluate(response=str(response), # # reference=condensed_context) # logger.info("Calculating faithfulness...") # faithfulness = faith_evaluator.evaluate_response(query=condensed_question, response=response) # # similar_str = str(round((similar.score * 100), 2)) + "%" # faithfulness_str = "Yes" if faithfulness.passing else "No" # # logger.info(f'**Search Query:** {condensed_question} \n **Faithfulness:** {faithfulness_str} \n ' # f'**Similarity:** {similar_str} \n **Sources used:** \n {sources}') response_text = [] string_output = "" for text in response.response_gen: response_text.append(text) string_output = ''.join(response_text) yield string_output # if not sourced: # pass # if sourced and not query and not rag_similarity: # yield string_output + f'\n\n --- \n **Sources used:** \n {sources}' # if sourced and query and not rag_similarity: # yield (string_output # + f'\n\n --- \n **Search Query:** {condensed_question} ' # f'\n **Sources used:** \n {sources}') # if rag_similarity: # yield (string_output # + f'\n\n --- \n **Search Query:** {condensed_question} \n ' # # f'**Similarity of response to the sources [ℹ️]' # # f'(https://en.wikipedia.org/wiki/Semantic_similarity):** {similar_str} \n' # f'**Is response in source documents?**: {faithfulness_str}' # f'\n **Sources used:** \n {sources}') logger.info(f'Assistant Response: {string_output}') else: logger.info( f'Assistant Response: Sorry, no search results found.') yield "Sorry, no search results found." else: yield from generate_chat_response_with_history(message, history) if __name__ == '__main__': logging.root.setLevel(logging.INFO) filehandler = logging.FileHandler(f'agent_log_{asctime().replace(" ", "").lower().replace(":", "")}.log', 'a') formatter = logging.Formatter('%(asctime)-15s::%(levelname)s::%(filename)s::%(funcName)s::%(lineno)d::%(message)s') filehandler.setFormatter(formatter) logger = logging.getLogger("agent_logger") for hdlr in logger.handlers[:]: # remove the existing file handlers if isinstance(hdlr, logging.FileHandler): logger.removeHandler(hdlr) logger.addHandler(filehandler) # set the new handler logger.setLevel(logging.INFO) api_key = os.getenv('gpt_api_key') # GPT - 4 Turbo. The latest GPT - 4 model intended to reduce cases of “laziness” where the model doesn’t complete # a task. Returns a maximum of 4,096 output tokens. Link: # https://openai.com/blog/new-embedding-models-and-api-updates set_llm(key=api_key, model="gpt-4-0125-preview", temperature=0) logger.info("Launching Gradio ChatInterface for searchbot...") demo = gr.ChatInterface(fn=google_search_chat, title="Search Assistant", retry_btn=None, undo_btn=None, clear_btn=None, theme="soft") demo.launch(auth=('convo', 'session2024'))