import logging import os from time import asctime import gradio as gr from llama_index.core import Document, VectorStoreIndex from generate_response import generate_chat_response_with_history, set_llm, is_search_query, \ generate_chat_response_with_history_rag_return_response, google_question from read_write_index import read_write_index from web_search import search logger = logging.getLogger("agent_logger") sourced = False query = False rag_similarity = False def google_search_chat(message, history): gquestion = google_question(message, history) if is_search_query(gquestion): search_results = search(message, gquestion) print(f'Search results returned: {len(search_results)}') relevant_content = "" for result in search_results: relevant_content = relevant_content + "\n" + ''.join(result['text']) print(f'Relevant content char length: {len(relevant_content)}') if relevant_content != "": documents = [Document(text=relevant_content)] index = VectorStoreIndex.from_documents(documents) print('Search results vectorized...') response = generate_chat_response_with_history_rag_return_response(index, message, history) else: print(f'Assistant Response: Sorry, no search results found, trying with offline resources.') index = read_write_index(path='storage_search/') response = generate_chat_response_with_history_rag_return_response(index, message, history) response_text = [] string_output = "" for text in response.response_gen: response_text.append(text) string_output = ''.join(response_text) yield string_output print(f'Assistant Response: {string_output}') else: yield from generate_chat_response_with_history(message, history) if __name__ == '__main__': logging.root.setLevel(logging.INFO) filehandler = logging.FileHandler(f'agent_log_{asctime().replace(" ", "").lower().replace(":", "")}.log', 'a') formatter = logging.Formatter('%(asctime)-15s::%(levelname)s::%(filename)s::%(funcName)s::%(lineno)d::%(message)s') filehandler.setFormatter(formatter) logger = logging.getLogger("agent_logger") for hdlr in logger.handlers[:]: # remove the existing file handlers if isinstance(hdlr, logging.FileHandler): logger.removeHandler(hdlr) logger.addHandler(filehandler) # set the new handler logger.setLevel(logging.INFO) api_key = os.getenv('gpt_api_key') # GPT - 4 Turbo. The latest GPT - 4 model intended to reduce cases of “laziness” where the model doesn’t complete # a task. Returns a maximum of 4,096 output tokens. Link: # https://openai.com/blog/new-embedding-models-and-api-updates set_llm(key=api_key, model="gpt-4-0125-preview", temperature=0) print("Launching Gradio ChatInterface for searchbot...") demo = gr.ChatInterface(fn=google_search_chat, title="Search Assistant", retry_btn=None, undo_btn=None, clear_btn=None, theme="soft") demo.launch() # auth=('convo', 'session2024')