Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
style_transfer_model = hub.load("https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2") | |
def perform_style_transfer(content_image, style_image): | |
content_image = tf.convert_to_tensor(content_image, np.float32)[tf.newaxis, ...] / 255. | |
style_image = tf.convert_to_tensor(style_image, np.float32)[tf.newaxis, ...] / 255. | |
output = style_transfer_model(content_image, style_image) | |
stylized_image = output[0] | |
return Image.fromarray(np.uint8(stylized_image[0] * 255)) | |
content_image_input = gr.inputs.Image(label="Content Image") | |
style_image_input = gr.inputs.Image(shape=(256, 256), label="Style Image") | |
# Examples | |
golden_gate = ["examples/golden_gate_bridge.jpeg", "examples/the_great_wave.jpeg"] | |
joshua_tree = ["examples/joshua_tree.jpeg", "examples/starry_night.jpeg"] | |
glacier = ["examples/glacier_national_park.jpeg", "examples/the_scream.jpg"] | |
app_interface = gr.Interface(fn=perform_style_transfer, | |
inputs=[content_image_input, style_image_input], | |
outputs="image", | |
title="Fast Neural Style Transfer", | |
description="Gradio demo for Fast Neural Style Transfer using a pretrained Image Stylization model from TensorFlow Hub. To use it, simply upload a content image and style image, or click one of the examples to load them. To learn more about the project, please find the references listed below.", | |
examples=[glacier, golden_gate, joshua_tree], | |
article="**References**\n\n" | |
"<a href='https://www.tensorflow.org/hub/tutorials/tf2_arbitrary_image_stylization' target='_blank'>1. Tutorial to implement Fast Neural Style Transfer using the pretrained model from TensorFlow Hub</a> \n" | |
"<a href='https://huggingface.co/spaces/luca-martial/neural-style-transfer' target='_blank'>2. The idea to build a neural style transfer application was inspired from this Hugging Face Space </a>") | |
app_interface.launch() | |