Delete model.py
Browse files
model.py
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
|
6 |
-
# hyperparameters
|
7 |
-
batch_size = 16 # how many independent sequences will we process in parallel?
|
8 |
-
block_size = 64 # what is the maximum context length for predictions?
|
9 |
-
max_iters = 5000
|
10 |
-
eval_interval = 100
|
11 |
-
learning_rate = 1e-3
|
12 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
13 |
-
eval_iters = 200
|
14 |
-
n_embd = 128
|
15 |
-
n_head = 8
|
16 |
-
n_layer = 4
|
17 |
-
dropout = 0.0
|
18 |
-
vocab = 101
|
19 |
-
# ------------
|
20 |
-
|
21 |
-
|
22 |
-
class Head(nn.Module):
|
23 |
-
def __init__(self, head_size):
|
24 |
-
super(Head,self).__init__()
|
25 |
-
self.head_size = head_size
|
26 |
-
self.dropout = nn.Dropout(dropout)
|
27 |
-
self.key = nn.Linear(n_embd, head_size, bias=False)
|
28 |
-
self.query = nn.Linear(n_embd, head_size, bias=False)
|
29 |
-
self.value = nn.Linear(n_embd, head_size, bias=False)
|
30 |
-
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
31 |
-
def forward(self,x):
|
32 |
-
k = self.key(x)
|
33 |
-
q = self.query(x)
|
34 |
-
wei = q @ k.transpose(-2,-1) * (self.head_size ** -0.5)
|
35 |
-
wei = wei.masked_fill(self.tril == 0, float('-inf'))
|
36 |
-
wei = F.softmax(wei, dim=-1)
|
37 |
-
wei = self.dropout(wei)
|
38 |
-
v = self.value(x)
|
39 |
-
out = wei @ v
|
40 |
-
return out
|
41 |
-
|
42 |
-
class MultiHeadAttention(nn.Module):
|
43 |
-
def __init__(self, n_head, head_size):
|
44 |
-
super(MultiHeadAttention,self).__init__()
|
45 |
-
self.head_size = head_size
|
46 |
-
self.n_head = n_head
|
47 |
-
self.heads = nn.ModuleList([Head(head_size) for _ in range(n_head)])
|
48 |
-
self.out = nn.Linear(n_embd, n_embd)
|
49 |
-
self.dropout = nn.Dropout(dropout)
|
50 |
-
|
51 |
-
def forward(self,x):
|
52 |
-
out = torch.cat([h(x) for h in self.heads], dim=-1)
|
53 |
-
out = self.out(out)
|
54 |
-
out = self.dropout(out)
|
55 |
-
return out
|
56 |
-
|
57 |
-
class FeedForwardLayer(nn.Module):
|
58 |
-
def __init__(self, n_embd):
|
59 |
-
super(FeedForwardLayer, self).__init__()
|
60 |
-
self.n_embd = n_embd
|
61 |
-
self.fc1 = nn.Linear(n_embd, 4*n_embd)
|
62 |
-
self.fc2 = nn.Linear(4*n_embd,n_embd)
|
63 |
-
self.dropout = nn.Dropout(dropout)
|
64 |
-
|
65 |
-
def forward(self, x):
|
66 |
-
out = self.fc1(x)
|
67 |
-
out = F.gelu(out)
|
68 |
-
out = self.fc2(out)
|
69 |
-
out = self.dropout(out)
|
70 |
-
return out
|
71 |
-
|
72 |
-
class Block(nn.Module):
|
73 |
-
def __init__(self):
|
74 |
-
super(Block, self).__init__()
|
75 |
-
self.attn = MultiHeadAttention(n_head, n_embd // n_head)
|
76 |
-
self.ff = FeedForwardLayer(n_embd)
|
77 |
-
self.ln1 = nn.LayerNorm(n_embd)
|
78 |
-
self.ln2 = nn.LayerNorm(n_embd)
|
79 |
-
def forward(self,x):
|
80 |
-
x = x + self.attn(self.ln1(x))
|
81 |
-
x = x + self.ff(self.ln2(x))
|
82 |
-
return x
|
83 |
-
|
84 |
-
class Transformer(nn.Module):
|
85 |
-
def __init__(self, n_embd, n_layer):
|
86 |
-
super(Transformer, self).__init__()
|
87 |
-
self.n_embd = n_embd
|
88 |
-
self.n_layer = n_layer
|
89 |
-
self.token_embedding = nn.Embedding(vocab, n_embd)
|
90 |
-
self.position_embedding = nn.Embedding(block_size,n_embd)
|
91 |
-
self.blocks = nn.Sequential(*[Block() for _ in range(n_layer)])
|
92 |
-
self.ln_f = nn.LayerNorm(n_embd) # final layer norm
|
93 |
-
self.ffwd = nn.Linear(n_embd, vocab)
|
94 |
-
|
95 |
-
def forward(self, idx, targets=None):
|
96 |
-
B,T = idx.shape
|
97 |
-
x = self.token_embedding(idx) + self.position_embedding(torch.arange(T, device=idx.device))
|
98 |
-
x = self.blocks(x)
|
99 |
-
x = self.ln_f(x)
|
100 |
-
logits = self.ffwd(x)
|
101 |
-
if targets is None:
|
102 |
-
loss = None
|
103 |
-
else:
|
104 |
-
B,T,C = logits.shape
|
105 |
-
logits = logits.view(B*T, C)
|
106 |
-
targets = targets.view(B*T)
|
107 |
-
loss = F.cross_entropy(logits, targets, ignore_index=0)
|
108 |
-
return logits,loss
|
109 |
-
|
110 |
-
def generate(self, idx, max_tokens):
|
111 |
-
for _ in range(max_tokens):
|
112 |
-
idx_cond = idx[:, -block_size:]
|
113 |
-
logits, _ = self(idx_cond)
|
114 |
-
logits = logits[:,-1,:]
|
115 |
-
probs = F.softmax(logits, dim=-1)
|
116 |
-
idx_next = torch.multinomial(probs, num_samples=1)
|
117 |
-
idx = torch.cat([idx, idx_next], dim=-1)
|
118 |
-
return idx
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|