import torch import torch.nn as nn import torch.nn.functional as F # hyperparameters batch_size = 16 # how many independent sequences will we process in parallel? block_size = 64 # what is the maximum context length for predictions? max_iters = 5000 eval_interval = 100 learning_rate = 1e-3 device = 'cuda' if torch.cuda.is_available() else 'cpu' eval_iters = 200 n_embd = 128 n_head = 8 n_layer = 4 dropout = 0.0 vocab = 101 # ------------ class Head(nn.Module): def __init__(self, head_size): super(Head,self).__init__() self.head_size = head_size self.dropout = nn.Dropout(dropout) self.key = nn.Linear(n_embd, head_size, bias=False) self.query = nn.Linear(n_embd, head_size, bias=False) self.value = nn.Linear(n_embd, head_size, bias=False) self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) def forward(self,x): k = self.key(x) q = self.query(x) wei = q @ k.transpose(-2,-1) * (self.head_size ** -0.5) wei = wei.masked_fill(self.tril == 0, float('-inf')) wei = F.softmax(wei, dim=-1) wei = self.dropout(wei) v = self.value(x) out = wei @ v return out class MultiHeadAttention(nn.Module): def __init__(self, n_head, head_size): super(MultiHeadAttention,self).__init__() self.head_size = head_size self.n_head = n_head self.heads = nn.ModuleList([Head(head_size) for _ in range(n_head)]) self.out = nn.Linear(n_embd, n_embd) self.dropout = nn.Dropout(dropout) def forward(self,x): out = torch.cat([h(x) for h in self.heads], dim=-1) out = self.out(out) out = self.dropout(out) return out class FeedForwardLayer(nn.Module): def __init__(self, n_embd): super(FeedForwardLayer, self).__init__() self.n_embd = n_embd self.fc1 = nn.Linear(n_embd, 4*n_embd) self.fc2 = nn.Linear(4*n_embd,n_embd) self.dropout = nn.Dropout(dropout) def forward(self, x): out = self.fc1(x) out = F.gelu(out) out = self.fc2(out) out = self.dropout(out) return out class Block(nn.Module): def __init__(self): super(Block, self).__init__() self.attn = MultiHeadAttention(n_head, n_embd // n_head) self.ff = FeedForwardLayer(n_embd) self.ln1 = nn.LayerNorm(n_embd) self.ln2 = nn.LayerNorm(n_embd) def forward(self,x): x = x + self.attn(self.ln1(x)) x = x + self.ff(self.ln2(x)) return x class Transformer(nn.Module): def __init__(self, n_embd, n_layer): super(Transformer, self).__init__() self.n_embd = n_embd self.n_layer = n_layer self.token_embedding = nn.Embedding(vocab, n_embd) self.position_embedding = nn.Embedding(block_size,n_embd) self.blocks = nn.Sequential(*[Block() for _ in range(n_layer)]) self.ln_f = nn.LayerNorm(n_embd) # final layer norm self.ffwd = nn.Linear(n_embd, vocab) def forward(self, idx, targets=None): B,T = idx.shape x = self.token_embedding(idx) + self.position_embedding(torch.arange(T, device=idx.device)) x = self.blocks(x) x = self.ln_f(x) logits = self.ffwd(x) if targets is None: loss = None else: B,T,C = logits.shape logits = logits.view(B*T, C) targets = targets.view(B*T) loss = F.cross_entropy(logits, targets, ignore_index=0) return logits,loss def generate(self, idx, max_tokens): for _ in range(max_tokens): idx_cond = idx[:, -block_size:] logits, _ = self(idx_cond) logits = logits[:,-1,:] probs = F.softmax(logits, dim=-1) idx_next = torch.multinomial(probs, num_samples=1) idx = torch.cat([idx, idx_next], dim=-1) return idx print(torch. __version__ )