import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import gradio as gr from designer import NeuralNetworkDesigner import tempfile import cv2 import numpy as np def generate_nn_code(image): designer = NeuralNetworkDesigner() temp_dir = tempfile.mkdtemp() temp_path = os.path.join(temp_dir, "input_image.png") if isinstance(image, np.ndarray): # If it's a numpy array (captured image or uploaded image) cv2.imwrite(temp_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) else: # If it's a file path (should not happen with current setup, but just in case) os.rename(image, temp_path) output_file = os.path.join(temp_dir, "custom_nn.py") designer.design_network(temp_path, output_file) with open(output_file, 'r') as f: code = f.read() return output_file, code # Check if the version of Gradio supports the 'source' parameter try: image_input = gr.Image(source=["upload", "webcam"], type="numpy", label="Upload or Capture Flowchart") except TypeError: # Fallback for older Gradio versions image_input = gr.Image(type="numpy", label="Upload Flowchart") iface = gr.Interface( fn=generate_nn_code, inputs=[image_input], outputs=[ gr.File(label="Download Generated Code"), gr.Code(language="python", label="Generated PyTorch Code") ], title="Sketch NN: Neural Network Designer", description="Upload a flowchart image or capture one using your webcam to generate PyTorch code for your neural network architecture." ) if __name__ == "__main__": iface.launch()