Spaces:
Running
Running
Julien Simon
commited on
Commit
•
0c0f086
1
Parent(s):
3fdf87c
Break results into one file per model
Browse files- .pre-commit-config.yaml +0 -7
- .pylintrc +1 -1
- app.py +120 -88
- requirements.txt +1 -0
- results.py +37 -693
- results_arcee_agent.py +75 -0
- results_arcee_lite.py +95 -0
- results_arcee_meraj.py +24 -0
- results_arcee_nova.py +141 -0
- results_arcee_scribe.py +71 -0
- results_arcee_spark.py +3 -0
- results_arcee_supernova.py +24 -0
- results_llama_spark.py +73 -0
.pre-commit-config.yaml
CHANGED
@@ -57,13 +57,6 @@ repos:
|
|
57 |
- id: cfn-lint
|
58 |
files: cloudformation/.*\.(json|yml|yaml)$
|
59 |
|
60 |
-
- repo: https://github.com/asottile/pyupgrade
|
61 |
-
rev: v3.17.0
|
62 |
-
hooks:
|
63 |
-
- id: pyupgrade
|
64 |
-
args: [--py310-plus]
|
65 |
-
entry: bash -c 'pyupgrade "$@"; git add -u' --
|
66 |
-
|
67 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
68 |
rev: v1.11.2
|
69 |
hooks:
|
|
|
57 |
- id: cfn-lint
|
58 |
files: cloudformation/.*\.(json|yml|yaml)$
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
61 |
rev: v1.11.2
|
62 |
hooks:
|
.pylintrc
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
[MESSAGES CONTROL]
|
2 |
-
disable=C0301,E0401,R0914
|
|
|
1 |
[MESSAGES CONTROL]
|
2 |
+
disable=R0801,C0301,E0401,R0914,R1702
|
app.py
CHANGED
@@ -1,3 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
import re
|
3 |
|
@@ -16,7 +21,7 @@ def get_model_names():
|
|
16 |
Returns:
|
17 |
list: Sorted list of model names.
|
18 |
"""
|
19 |
-
return sorted([model[
|
20 |
|
21 |
|
22 |
def get_models_by_architecture(model_name):
|
@@ -29,12 +34,14 @@ def get_models_by_architecture(model_name):
|
|
29 |
Returns:
|
30 |
list: List of models with the same architecture.
|
31 |
"""
|
32 |
-
selected_model = next(
|
|
|
|
|
33 |
if not selected_model:
|
34 |
return []
|
35 |
-
|
36 |
-
model_type = selected_model.get(
|
37 |
-
return [m for m in results[
|
38 |
|
39 |
|
40 |
def custom_sort_key(instance_type):
|
@@ -47,12 +54,24 @@ def custom_sort_key(instance_type):
|
|
47 |
Returns:
|
48 |
tuple: A tuple used for sorting, containing (family, size_index).
|
49 |
"""
|
50 |
-
size_order = [
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
if match:
|
54 |
family, size = match.groups()
|
55 |
-
return (
|
|
|
|
|
|
|
56 |
return (instance_type, 0) # Fallback for non-standard instance types
|
57 |
|
58 |
|
@@ -71,109 +90,122 @@ def display_results(model_name):
|
|
71 |
try:
|
72 |
models = get_models_by_architecture(model_name)
|
73 |
if not models:
|
74 |
-
logging.warning(
|
75 |
-
return
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
79 |
merged_models = set()
|
80 |
|
81 |
for model in models:
|
82 |
-
merged_models.add(model.get(
|
83 |
-
for config in model.get(
|
84 |
try:
|
85 |
-
cloud = config.get(
|
86 |
-
instance_type = config.get(
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
"Cloud": cloud,
|
94 |
"Instance Type": instance_type,
|
95 |
-
"GPU": config.get(
|
96 |
-
"GPU RAM": config.get(
|
97 |
-
"Status":
|
98 |
-
"Quantization":
|
99 |
-
"Container":
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
}
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
data[unique_key] = {
|
107 |
-
"Cloud": cloud,
|
108 |
-
"Instance Type": instance_type,
|
109 |
-
"GPU": config.get('gpu', 'N/A'),
|
110 |
-
"GPU RAM": config.get('gpuRAM', 'N/A'),
|
111 |
-
"Status": config.get('status', 'N/A'),
|
112 |
-
"Quantization": config.get('quantization', 'N/A'),
|
113 |
-
"Container": config.get('container', config.get('tgi', 'N/A')),
|
114 |
-
"Tokens per Second": config.get('tokensPerSecond', 'N/A'),
|
115 |
-
"Notes": config.get('notes', ''),
|
116 |
-
}
|
117 |
-
except Exception as e:
|
118 |
-
print(f"Error processing configuration: {e}")
|
119 |
continue
|
120 |
|
121 |
if not data:
|
122 |
-
logging.warning(
|
123 |
-
return
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
for field in value:
|
128 |
-
if value[field] == 'N/A':
|
129 |
-
for other_key, other_value in data.items():
|
130 |
-
if other_key[0] == key[0] and other_value[field] != 'N/A':
|
131 |
-
value[field] = other_value[field]
|
132 |
-
break
|
133 |
-
|
134 |
-
# Filter out rows where Status is 'N/A'
|
135 |
-
data = {k: v for k, v in data.items() if v['Status'] != 'N/A'}
|
136 |
|
137 |
-
merged_models_message =
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
sorted_data = sorted(data.values(), key=lambda x: custom_sort_key(x['Instance Type']))
|
141 |
|
142 |
-
|
143 |
if merged_models_message:
|
144 |
-
|
145 |
-
|
146 |
df = pd.DataFrame(sorted_data)
|
147 |
-
|
148 |
def color_status(val):
|
149 |
-
if val ==
|
150 |
-
return
|
151 |
-
|
152 |
-
return
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
155 |
|
156 |
-
|
157 |
-
|
158 |
-
return
|
|
|
|
|
|
|
159 |
|
160 |
-
except Exception as e:
|
161 |
-
logging.exception(f"Error in display_results: {e}")
|
162 |
-
return f"An error occurred while processing results for {model_name}: {str(e)}", pd.DataFrame()
|
163 |
|
164 |
with gr.Blocks() as demo:
|
165 |
gr.Markdown("# Model Benchmark Results")
|
166 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
167 |
model_dropdown = gr.Dropdown(choices=get_model_names(), label="Select Model")
|
168 |
-
|
169 |
results_text = gr.Markdown()
|
170 |
results_output = gr.DataFrame(label="Results")
|
171 |
-
|
172 |
model_dropdown.change(
|
173 |
-
display_results,
|
174 |
-
inputs=[model_dropdown],
|
175 |
-
outputs=[results_text, results_output]
|
176 |
)
|
177 |
|
178 |
-
if __name__ == "__main__":
|
179 |
-
|
|
|
1 |
+
"""
|
2 |
+
This module provides functionality for displaying and analyzing model benchmark results.
|
3 |
+
It includes functions for data processing, sorting, and a Gradio interface for user interaction.
|
4 |
+
"""
|
5 |
+
|
6 |
import logging
|
7 |
import re
|
8 |
|
|
|
21 |
Returns:
|
22 |
list: Sorted list of model names.
|
23 |
"""
|
24 |
+
return sorted([model["name"] for model in results["models"]])
|
25 |
|
26 |
|
27 |
def get_models_by_architecture(model_name):
|
|
|
34 |
Returns:
|
35 |
list: List of models with the same architecture.
|
36 |
"""
|
37 |
+
selected_model = next(
|
38 |
+
(m for m in results["models"] if m["name"] == model_name), None
|
39 |
+
)
|
40 |
if not selected_model:
|
41 |
return []
|
42 |
+
|
43 |
+
model_type = selected_model.get("modelType", "")
|
44 |
+
return [m for m in results["models"] if m.get("modelType", "") == model_type]
|
45 |
|
46 |
|
47 |
def custom_sort_key(instance_type):
|
|
|
54 |
Returns:
|
55 |
tuple: A tuple used for sorting, containing (family, size_index).
|
56 |
"""
|
57 |
+
size_order = [
|
58 |
+
"xlarge",
|
59 |
+
"2xlarge",
|
60 |
+
"4xlarge",
|
61 |
+
"8xlarge",
|
62 |
+
"12xlarge",
|
63 |
+
"16xlarge",
|
64 |
+
"24xlarge",
|
65 |
+
"48xlarge",
|
66 |
+
]
|
67 |
+
|
68 |
+
match = re.match(r"([a-z]+\d+)\.(\w+)", instance_type)
|
69 |
if match:
|
70 |
family, size = match.groups()
|
71 |
+
return (
|
72 |
+
family,
|
73 |
+
size_order.index(size) if size in size_order else len(size_order),
|
74 |
+
)
|
75 |
return (instance_type, 0) # Fallback for non-standard instance types
|
76 |
|
77 |
|
|
|
90 |
try:
|
91 |
models = get_models_by_architecture(model_name)
|
92 |
if not models:
|
93 |
+
logging.warning("No models found for %s", model_name)
|
94 |
+
return (
|
95 |
+
f"No results found for the selected model: {model_name}",
|
96 |
+
pd.DataFrame(),
|
97 |
+
)
|
98 |
+
|
99 |
+
model_type = models[0].get("modelType", "N/A")
|
100 |
+
data = []
|
101 |
merged_models = set()
|
102 |
|
103 |
for model in models:
|
104 |
+
merged_models.add(model.get("name", "Unknown"))
|
105 |
+
for config in model.get("configurations", []):
|
106 |
try:
|
107 |
+
cloud = config.get("cloud", "N/A")
|
108 |
+
instance_type = config.get("instanceType", "N/A")
|
109 |
+
|
110 |
+
if "configurations" in config:
|
111 |
+
for nested_config in config["configurations"]:
|
112 |
+
data.append(
|
113 |
+
{
|
114 |
+
"Cloud": cloud,
|
115 |
+
"Instance Type": instance_type,
|
116 |
+
"GPU": config.get("gpu", "N/A"),
|
117 |
+
"GPU RAM": config.get("gpuRAM", "N/A"),
|
118 |
+
"Status": nested_config.get("status", "N/A"),
|
119 |
+
"Quantization": nested_config.get(
|
120 |
+
"quantization", "N/A"
|
121 |
+
),
|
122 |
+
"Container": nested_config.get(
|
123 |
+
"container",
|
124 |
+
nested_config.get("tgi", "N/A"),
|
125 |
+
),
|
126 |
+
"Tokens per Second": nested_config.get(
|
127 |
+
"tokensPerSecond", "N/A"
|
128 |
+
),
|
129 |
+
"Notes": nested_config.get("notes", ""),
|
130 |
+
}
|
131 |
+
)
|
132 |
+
else:
|
133 |
+
data.append(
|
134 |
+
{
|
135 |
"Cloud": cloud,
|
136 |
"Instance Type": instance_type,
|
137 |
+
"GPU": config.get("gpu", "N/A"),
|
138 |
+
"GPU RAM": config.get("gpuRAM", "N/A"),
|
139 |
+
"Status": config.get("status", "N/A"),
|
140 |
+
"Quantization": config.get("quantization", "N/A"),
|
141 |
+
"Container": config.get(
|
142 |
+
"container", config.get("tgi", "N/A")
|
143 |
+
),
|
144 |
+
"Tokens per Second": config.get(
|
145 |
+
"tokensPerSecond", "N/A"
|
146 |
+
),
|
147 |
+
"Notes": config.get("notes", ""),
|
148 |
}
|
149 |
+
)
|
150 |
+
except (KeyError, ValueError, TypeError) as e:
|
151 |
+
logging.error("Error processing configuration: %s", e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
continue
|
153 |
|
154 |
if not data:
|
155 |
+
logging.warning("No data extracted for %s", model_name)
|
156 |
+
return (
|
157 |
+
f"No data for the selected model: {model_name}",
|
158 |
+
pd.DataFrame(),
|
159 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
merged_models_message = (
|
162 |
+
f"Note: Results merged from models: {', '.join(merged_models)}"
|
163 |
+
if len(merged_models) > 1
|
164 |
+
else None
|
165 |
+
)
|
166 |
|
167 |
+
sorted_data = sorted(data, key=lambda x: custom_sort_key(x["Instance Type"]))
|
|
|
168 |
|
169 |
+
result_text = f"## Results for {model_name}\n\nModel Type: {model_type}"
|
170 |
if merged_models_message:
|
171 |
+
result_text += f"\n\n{merged_models_message}"
|
172 |
+
|
173 |
df = pd.DataFrame(sorted_data)
|
174 |
+
|
175 |
def color_status(val):
|
176 |
+
if val == "OK":
|
177 |
+
return "background-color: green; color: white"
|
178 |
+
if val == "KO":
|
179 |
+
return "background-color: red; color: white"
|
180 |
+
return ""
|
181 |
+
|
182 |
+
styled_df = df.style.applymap(color_status, subset=["Status"])
|
183 |
+
|
184 |
+
return result_text, styled_df
|
185 |
|
186 |
+
except (KeyError, ValueError, TypeError) as e:
|
187 |
+
logging.exception("Error in display_results: %s", e)
|
188 |
+
return (
|
189 |
+
f"An error for {model_name}: {str(e)}",
|
190 |
+
pd.DataFrame(),
|
191 |
+
)
|
192 |
|
|
|
|
|
|
|
193 |
|
194 |
with gr.Blocks() as demo:
|
195 |
gr.Markdown("# Model Benchmark Results")
|
196 |
+
gr.Markdown(
|
197 |
+
"""This table shows the benchmark results for each model. \n
|
198 |
+
[TGI](https://huggingface.co/docs/text-generation-inference/reference/launcher),
|
199 |
+
[vLLM](https://docs.djl.ai/master/docs/serving/serving/docs/lmi/user_guides/vllm_user_guide.html), etc.) are default unless noted."""
|
200 |
+
)
|
201 |
model_dropdown = gr.Dropdown(choices=get_model_names(), label="Select Model")
|
202 |
+
|
203 |
results_text = gr.Markdown()
|
204 |
results_output = gr.DataFrame(label="Results")
|
205 |
+
|
206 |
model_dropdown.change(
|
207 |
+
display_results, inputs=[model_dropdown], outputs=[results_text, results_output]
|
|
|
|
|
208 |
)
|
209 |
|
210 |
+
if __name__ == "__main__":
|
211 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
gradio
|
|
|
|
1 |
gradio
|
2 |
+
pandas
|
results.py
CHANGED
@@ -1,699 +1,43 @@
|
|
1 |
"""Module containing model configuration results for various AI models and hardware setups."""
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
results = {
|
4 |
"models": [
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
"gpu": "4xNVIDIA A10G",
|
14 |
-
"gpuRAM": "96 GB",
|
15 |
-
"quantization": "awq",
|
16 |
-
"container": "TGI 2.2.0",
|
17 |
-
"status": "OK",
|
18 |
-
"tokensPerSecond": "33",
|
19 |
-
"notes": "",
|
20 |
-
},
|
21 |
-
{
|
22 |
-
"region": "us-west-2",
|
23 |
-
"instanceType": "p4d.24xlarge",
|
24 |
-
"cloud": "AWS",
|
25 |
-
"gpu": "4xNVIDIA A100",
|
26 |
-
"gpuRAM": "320 GB",
|
27 |
-
"quantization": "none",
|
28 |
-
"container": "TGI 2.2.0",
|
29 |
-
"status": "OK",
|
30 |
-
"tokensPerSecond": "38",
|
31 |
-
"notes": "",
|
32 |
-
},
|
33 |
-
],
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"name": "Arcee-SuperNova",
|
37 |
-
"modelType": "Llama 3.1 70B",
|
38 |
-
"configurations": [
|
39 |
-
{
|
40 |
-
"region": "us-west-2",
|
41 |
-
"instanceType": "g5.12xlarge",
|
42 |
-
"cloud": "AWS",
|
43 |
-
"gpu": "4xNVIDIA A10G",
|
44 |
-
"gpuRAM": "96 GB",
|
45 |
-
"quantization": "awq",
|
46 |
-
"container": "TGI 2.2.0",
|
47 |
-
"status": "OK",
|
48 |
-
"tokensPerSecond": "33",
|
49 |
-
"notes": "",
|
50 |
-
},
|
51 |
-
{
|
52 |
-
"region": "us-west-2",
|
53 |
-
"instanceType": "p4d.24xlarge",
|
54 |
-
"cloud": "AWS",
|
55 |
-
"gpu": "4xNVIDIA A100",
|
56 |
-
"gpuRAM": "320 GB",
|
57 |
-
"quantization": "none",
|
58 |
-
"container": "TGI 2.2.0",
|
59 |
-
"status": "OK",
|
60 |
-
"tokensPerSecond": "38",
|
61 |
-
"notes": "",
|
62 |
-
},
|
63 |
-
],
|
64 |
-
},
|
65 |
-
{
|
66 |
-
"name": "Arcee-Nova",
|
67 |
-
"modelType": "Qwen2 72B",
|
68 |
-
"notes": "",
|
69 |
-
"configurations": [
|
70 |
-
{
|
71 |
-
"region": "us-west-2",
|
72 |
-
"instanceType": "g4dn.12xlarge",
|
73 |
-
"cloud": "AWS",
|
74 |
-
"gpu": "4xNVIDIA T4",
|
75 |
-
"gpuRAM": "64 GB",
|
76 |
-
"quantization": "bitsandbytes-nf4",
|
77 |
-
"container": "TGI 2.2.0",
|
78 |
-
"status": "KO",
|
79 |
-
"tokensPerSecond": "-",
|
80 |
-
"notes": "Flash Attention requires Ampere GPUs or newer",
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"region": "us-west-2",
|
84 |
-
"instanceType": "g5.12xlarge",
|
85 |
-
"cloud": "AWS",
|
86 |
-
"gpu": "4xNVIDIA A10G",
|
87 |
-
"gpuRAM": "96 GB",
|
88 |
-
"configurations": [
|
89 |
-
{
|
90 |
-
"quantization": "bitsandbytes-nf4",
|
91 |
-
"container": "TGI 2.2.0",
|
92 |
-
"status": "OK",
|
93 |
-
"tokensPerSecond": "12",
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"quantization": "bitsandbytes-fp4",
|
97 |
-
"container": "TGI 2.2.0",
|
98 |
-
"status": "OK",
|
99 |
-
"tokensPerSecond": "12",
|
100 |
-
},
|
101 |
-
{
|
102 |
-
"quantization": "bitsandbytes (int8)",
|
103 |
-
"container": "TGI 2.2.0",
|
104 |
-
"status": "KO",
|
105 |
-
"tokensPerSecond": "-",
|
106 |
-
"notes": "CUDA OOM",
|
107 |
-
},
|
108 |
-
{
|
109 |
-
"quantization": "eetq (int8)",
|
110 |
-
"container": "TGI 2.2.0",
|
111 |
-
"status": "KO",
|
112 |
-
"tokensPerSecond": "-",
|
113 |
-
"notes": "[FT Error] Heurisitc failed to find a valid config.",
|
114 |
-
},
|
115 |
-
],
|
116 |
-
},
|
117 |
-
{
|
118 |
-
"region": "us-west-2",
|
119 |
-
"instanceType": "g5.48xlarge",
|
120 |
-
"cloud": "AWS",
|
121 |
-
"gpu": "8xNVIDIA A10G",
|
122 |
-
"gpuRAM": "192 GB",
|
123 |
-
"configurations": [
|
124 |
-
{
|
125 |
-
"quantization": "none",
|
126 |
-
"container": "TGI 2.2.0",
|
127 |
-
"status": "KO",
|
128 |
-
"tokensPerSecond": "-",
|
129 |
-
"notes": "CUDA OOM (but g6.48xlarge works!)",
|
130 |
-
},
|
131 |
-
{
|
132 |
-
"quantization": "bitsandbytes-nf4",
|
133 |
-
"container": "TGI 2.2.0",
|
134 |
-
"status": "OK",
|
135 |
-
"tokensPerSecond": "12.3",
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"quantization": "bitsandbytes-fp4",
|
139 |
-
"container": "TGI 2.2.0",
|
140 |
-
"status": "OK",
|
141 |
-
"tokensPerSecond": "12.5",
|
142 |
-
},
|
143 |
-
{
|
144 |
-
"quantization": "bitsandbytes (int8)",
|
145 |
-
"container": "TGI 2.2.0",
|
146 |
-
"status": "KO",
|
147 |
-
"tokensPerSecond": "-",
|
148 |
-
"notes": "The model deploys, but inference times out.",
|
149 |
-
},
|
150 |
-
],
|
151 |
-
},
|
152 |
-
{
|
153 |
-
"region": "us-west-2",
|
154 |
-
"instanceType": "g6.12xlarge",
|
155 |
-
"cloud": "AWS",
|
156 |
-
"gpu": "4xNVIDIA L4",
|
157 |
-
"gpuRAM": "96 GB",
|
158 |
-
"configurations": [
|
159 |
-
{
|
160 |
-
"quantization": "bitsandbytes-nf4",
|
161 |
-
"container": "TGI 2.2.0",
|
162 |
-
"status": "OK",
|
163 |
-
"tokensPerSecond": "1.5-2",
|
164 |
-
"notes": "Too slow, timeouts are likely",
|
165 |
-
},
|
166 |
-
{
|
167 |
-
"quantization": "bitsandbytes-fp4",
|
168 |
-
"container": "TGI 2.2.0",
|
169 |
-
"status": "OK",
|
170 |
-
"tokensPerSecond": "2",
|
171 |
-
"notes": "Too slow, timeouts are likely",
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"quantization": "bitsandbytes (int8)",
|
175 |
-
"container": "TGI 2.2.0",
|
176 |
-
"status": "KO",
|
177 |
-
"tokensPerSecond": "-",
|
178 |
-
"notes": "CUDA OOM",
|
179 |
-
},
|
180 |
-
],
|
181 |
-
},
|
182 |
-
{
|
183 |
-
"region": "us-west-2",
|
184 |
-
"instanceType": "g6.48xlarge",
|
185 |
-
"cloud": "AWS",
|
186 |
-
"gpu": "8xNVIDIA L4",
|
187 |
-
"gpuRAM": "192 GB",
|
188 |
-
"quantization": "none",
|
189 |
-
"container": "TGI 2.2.0",
|
190 |
-
"status": "OK",
|
191 |
-
"tokensPerSecond": "12",
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"region": "us-west-2",
|
195 |
-
"instanceType": "p4d.24xlarge",
|
196 |
-
"cloud": "AWS",
|
197 |
-
"gpu": "8xNVIDIA A100",
|
198 |
-
"gpuRAM": "320 GB",
|
199 |
-
"quantization": "none",
|
200 |
-
"container": "TGI 2.2.0",
|
201 |
-
"status": "OK",
|
202 |
-
"tokensPerSecond": "40",
|
203 |
-
"notes": '"MAX_INPUT_LENGTH": "16384", "MAX_TOTAL_TOKENS": "32768",',
|
204 |
-
},
|
205 |
-
{
|
206 |
-
"region": "us-west-2",
|
207 |
-
"instanceType": "p4de.24xlarge",
|
208 |
-
"cloud": "AWS",
|
209 |
-
"gpu": "8xNVIDIA A100",
|
210 |
-
"gpuRAM": "320 GB",
|
211 |
-
"quantization": "none",
|
212 |
-
"container": "TGI 2.2.0",
|
213 |
-
"status": "waiting for quota",
|
214 |
-
},
|
215 |
-
{
|
216 |
-
"region": "us-west-2",
|
217 |
-
"instanceType": "p5.48xlarge",
|
218 |
-
"cloud": "AWS",
|
219 |
-
"gpu": "8xNVIDIA H100",
|
220 |
-
"gpuRAM": "640GB",
|
221 |
-
"quantization": "none",
|
222 |
-
"container": "TGI 2.2.0",
|
223 |
-
"status": "OK",
|
224 |
-
"tokensPerSecond": "58",
|
225 |
-
"notes": '"MAX_INPUT_LENGTH": "16384", "MAX_TOTAL_TOKENS": "32768",',
|
226 |
-
},
|
227 |
-
{
|
228 |
-
"region": "us-west-2",
|
229 |
-
"instanceType": "inf2.*",
|
230 |
-
"cloud": "AWS",
|
231 |
-
"gpu": "-",
|
232 |
-
"container": "TGI 2.2.0",
|
233 |
-
"status": "not supported",
|
234 |
-
"tokensPerSecond": "-",
|
235 |
-
"notes": "Qwen2: TGI OK, Neuron SDK KO, optimum-neuron KO",
|
236 |
-
},
|
237 |
-
],
|
238 |
-
},
|
239 |
-
{
|
240 |
-
"name": "Llama-Spark",
|
241 |
-
"modelType": "Llama 3.1 8B",
|
242 |
-
"configurations": [
|
243 |
-
{
|
244 |
-
"region": "AWS",
|
245 |
-
"instanceType": "g5.2xlarge",
|
246 |
-
"cloud": "AWS",
|
247 |
-
"gpu": "1xNVIDIA A10G",
|
248 |
-
"gpuRAM": "24 GB",
|
249 |
-
"quantization": "none",
|
250 |
-
"container": "TGI 2.2.0",
|
251 |
-
"status": "OK",
|
252 |
-
"tokensPerSecond": "29",
|
253 |
-
"notes": "4K/8K fails",
|
254 |
-
},
|
255 |
-
{
|
256 |
-
"region": "AWS",
|
257 |
-
"instanceType": "g5.12xlarge",
|
258 |
-
"cloud": "AWS",
|
259 |
-
"gpu": "4xNVIDIA A10G",
|
260 |
-
"gpuRAM": "96 GB",
|
261 |
-
"quantization": "none",
|
262 |
-
"container": "TGI 2.2.0",
|
263 |
-
"status": "OK",
|
264 |
-
"tokensPerSecond": "85",
|
265 |
-
"notes": '"MAX_INPUT_TOKENS": "16384", "MAX_TOTAL_TOKENS": "32768",',
|
266 |
-
},
|
267 |
-
{
|
268 |
-
"region": "AWS",
|
269 |
-
"instanceType": "g5.48xlarge",
|
270 |
-
"cloud": "AWS",
|
271 |
-
"gpu": "8xNVIDIA A10G",
|
272 |
-
"gpuRAM": "192 GB",
|
273 |
-
"quantization": "none",
|
274 |
-
"container": "TGI 2.2.0",
|
275 |
-
"status": "OK",
|
276 |
-
"tokensPerSecond": "105",
|
277 |
-
"notes": '"MAX_INPUT_TOKENS": "20480", "MAX_TOTAL_TOKENS": "40960"\n\n32K/64K fails',
|
278 |
-
},
|
279 |
-
{
|
280 |
-
"region": "AWS",
|
281 |
-
"instanceType": "g6.2xlarge",
|
282 |
-
"cloud": "AWS",
|
283 |
-
"gpu": "1xNVIDIA L4",
|
284 |
-
"gpuRAM": "24 GB",
|
285 |
-
"configurations": [
|
286 |
-
{
|
287 |
-
"quantization": "none",
|
288 |
-
"container": "TGI 2.2.0",
|
289 |
-
"status": "OK",
|
290 |
-
"tokensPerSecond": "15",
|
291 |
-
},
|
292 |
-
{"quantization": "fp8", "container": "TGI 2.2.0"},
|
293 |
-
],
|
294 |
-
},
|
295 |
-
{
|
296 |
-
"region": "AWS",
|
297 |
-
"instanceType": "g6.12xlarge",
|
298 |
-
"cloud": "AWS",
|
299 |
-
"gpu": "4xNVIDIA L4",
|
300 |
-
"gpuRAM": "96 GB",
|
301 |
-
"quantization": "none",
|
302 |
-
"container": "TGI 2.2.0",
|
303 |
-
"status": "OK",
|
304 |
-
"tokensPerSecond": "51",
|
305 |
-
"notes": "same as g5?",
|
306 |
-
},
|
307 |
-
{
|
308 |
-
"region": "AWS",
|
309 |
-
"instanceType": "g6.48xlarge",
|
310 |
-
"cloud": "AWS",
|
311 |
-
"gpu": "8xNVIDIA L4",
|
312 |
-
"gpuRAM": "192 GB",
|
313 |
-
"quantization": "none",
|
314 |
-
"container": "TGI 2.2.0",
|
315 |
-
"status": "OK",
|
316 |
-
"tokensPerSecond": "81",
|
317 |
-
"notes": "same as g5?",
|
318 |
-
},
|
319 |
-
{
|
320 |
-
"region": "AWS",
|
321 |
-
"instanceType": "g6e.2xlarge",
|
322 |
-
"cloud": "AWS",
|
323 |
-
"gpu": "1xNVIDIA L40S",
|
324 |
-
"gpuRAM": "48 GB",
|
325 |
-
"quantization": "none",
|
326 |
-
"container": "TGI 2.2.0",
|
327 |
-
"status": "OK",
|
328 |
-
"tokensPerSecond": "42.1",
|
329 |
-
},
|
330 |
-
{
|
331 |
-
"region": "AWS",
|
332 |
-
"instanceType": "g6e.2xlarge",
|
333 |
-
"cloud": "AWS",
|
334 |
-
"gpu": "1xNVIDIA L40S",
|
335 |
-
"gpuRAM": "48 GB",
|
336 |
-
"quantization": "none",
|
337 |
-
"container": "SGLang 0.2.13",
|
338 |
-
"status": "OK",
|
339 |
-
"tokensPerSecond": "45",
|
340 |
-
},
|
341 |
-
{
|
342 |
-
"region": "AWS",
|
343 |
-
"instanceType": "g6e.2xlarge",
|
344 |
-
"cloud": "AWS",
|
345 |
-
"gpu": "1xNVIDIA L40S",
|
346 |
-
"gpuRAM": "48 GB",
|
347 |
-
"quantization": "none",
|
348 |
-
"container": "vLLM 0.5.5",
|
349 |
-
"status": "OK",
|
350 |
-
"tokensPerSecond": "43.4",
|
351 |
-
},
|
352 |
-
{
|
353 |
-
"region": "AWS",
|
354 |
-
"instanceType": "p4d.24xlarge",
|
355 |
-
"cloud": "AWS",
|
356 |
-
"gpu": "4xNVIDIA A100",
|
357 |
-
"gpuRAM": "320 GB",
|
358 |
-
"quantization": "none",
|
359 |
-
"container": "TGI 2.2.0",
|
360 |
-
"status": "OK",
|
361 |
-
"tokensPerSecond": "145",
|
362 |
-
"notes": '"MAX_INPUT_TOKENS": "40960", "MAX_TOTAL_TOKENS": "81920"\n\n64K/128K fails (even with 4-bit)',
|
363 |
-
},
|
364 |
-
{
|
365 |
-
"region": "AWS",
|
366 |
-
"instanceType": "inf2.*",
|
367 |
-
"cloud": "AWS",
|
368 |
-
"gpu": "-",
|
369 |
-
"status": "not supported",
|
370 |
-
"tokensPerSecond": "-",
|
371 |
-
"notes": "Llama-3.1: TGI OK, Neuron SDK OK, optimum-neuron KO",
|
372 |
-
},
|
373 |
-
],
|
374 |
-
},
|
375 |
-
{
|
376 |
-
"name": "Arcee-Agent",
|
377 |
-
"modelType": "Qwen2 7B",
|
378 |
-
"notes": "",
|
379 |
-
"configurations": [
|
380 |
-
{
|
381 |
-
"region": "us-west-2",
|
382 |
-
"instanceType": "g5.2xlarge",
|
383 |
-
"cloud": "AWS",
|
384 |
-
"gpu": "1xNVIDIA A10G",
|
385 |
-
"gpuRAM": "24 GB",
|
386 |
-
"quantization": "none",
|
387 |
-
"container": "TGI 2.2.0",
|
388 |
-
"status": "OK",
|
389 |
-
"tokensPerSecond": "30",
|
390 |
-
},
|
391 |
-
{
|
392 |
-
"region": "us-west-2",
|
393 |
-
"instanceType": "g5.12xlarge",
|
394 |
-
"cloud": "AWS",
|
395 |
-
"gpu": "4xNVIDIA A10G",
|
396 |
-
"gpuRAM": "96 GB",
|
397 |
-
"quantization": "none",
|
398 |
-
"container": "TGI 2.2.0",
|
399 |
-
"status": "OK",
|
400 |
-
"tokensPerSecond": "83",
|
401 |
-
},
|
402 |
-
{
|
403 |
-
"region": "us-west-2",
|
404 |
-
"instanceType": "g5.48xlarge",
|
405 |
-
"cloud": "AWS",
|
406 |
-
"gpu": "8xNVIDIA A10G",
|
407 |
-
"gpuRAM": "192 GB",
|
408 |
-
"quantization": "none",
|
409 |
-
"container": "TGI 2.2.0",
|
410 |
-
"status": "KO",
|
411 |
-
"tokensPerSecond": "-",
|
412 |
-
"notes": "ValueError: `num_heads` must be divisible by `num_shards` (got `num_heads`: 28 and `num_shards`: 8\n\nSM_NUM_GPUS=7 doesn't work either because tensor size ares not a multiple of 7 (e.g., 512)",
|
413 |
-
},
|
414 |
-
{
|
415 |
-
"region": "us-west-2",
|
416 |
-
"instanceType": "g6.2xlarge",
|
417 |
-
"cloud": "AWS",
|
418 |
-
"gpu": "1xNVIDIA L4",
|
419 |
-
"gpuRAM": "24 GB",
|
420 |
-
"quantization": "none",
|
421 |
-
"container": "TGI 2.2.0",
|
422 |
-
"status": "OK",
|
423 |
-
"tokensPerSecond": "16.3",
|
424 |
-
},
|
425 |
-
{
|
426 |
-
"region": "us-west-2",
|
427 |
-
"instanceType": "g6.12xlarge",
|
428 |
-
"cloud": "AWS",
|
429 |
-
"gpu": "4xNVIDIA L4",
|
430 |
-
"gpuRAM": "96 GB",
|
431 |
-
"quantization": "none",
|
432 |
-
"container": "TGI 2.2.0",
|
433 |
-
"status": "OK",
|
434 |
-
"tokensPerSecond": "54.2",
|
435 |
-
},
|
436 |
-
{
|
437 |
-
"region": "us-west-2",
|
438 |
-
"instanceType": "inf2.*",
|
439 |
-
"cloud": "AWS",
|
440 |
-
"gpu": "-",
|
441 |
-
"container": "TGI 2.2.0",
|
442 |
-
"status": "not supported",
|
443 |
-
"tokensPerSecond": "-",
|
444 |
-
"notes": "Qwen2: TGI OK, Neuron SDK KO, optimum-neuron KO",
|
445 |
-
},
|
446 |
-
{
|
447 |
-
"region": "us-west-2",
|
448 |
-
"instanceType": "g6e.2xlarge",
|
449 |
-
"cloud": "AWS",
|
450 |
-
"gpu": "1xNVIDIA L40S",
|
451 |
-
"gpuRAM": "48 GB",
|
452 |
-
"quantization": "none",
|
453 |
-
"container": "TGI 2.2.0",
|
454 |
-
"status": "OK",
|
455 |
-
"tokensPerSecond": "45",
|
456 |
-
},
|
457 |
-
{
|
458 |
-
"region": "us-west-2",
|
459 |
-
"instanceType": "g6e.2xlarge",
|
460 |
-
"cloud": "AWS",
|
461 |
-
"gpu": "1xNVIDIA L40S",
|
462 |
-
"gpuRAM": "48 GB",
|
463 |
-
"quantization": "none",
|
464 |
-
"container": "SGLang 0.2.13",
|
465 |
-
"status": "OK",
|
466 |
-
"tokensPerSecond": "48",
|
467 |
-
},
|
468 |
-
{
|
469 |
-
"region": "us-west-2",
|
470 |
-
"instanceType": "g6e.2xlarge",
|
471 |
-
"cloud": "AWS",
|
472 |
-
"gpu": "1xNVIDIA L40S",
|
473 |
-
"gpuRAM": "48 GB",
|
474 |
-
"quantization": "none",
|
475 |
-
"container": "vLLM 0.5.5",
|
476 |
-
"status": "OK",
|
477 |
-
"tokensPerSecond": "45.7",
|
478 |
-
},
|
479 |
-
],
|
480 |
-
},
|
481 |
-
{"name": "Arcee-Spark", "modelType": "Qwen2 7B"},
|
482 |
-
{
|
483 |
-
"name": "Arcee-Lite",
|
484 |
-
"modelType": "Qwen2 1.5B distilled from phi-3-medium 14B",
|
485 |
-
"configurations": [
|
486 |
-
{
|
487 |
-
"region": "us-west-2",
|
488 |
-
"instanceType": "c6i.xlarge",
|
489 |
-
"cloud": "AWS",
|
490 |
-
"gpu": "-",
|
491 |
-
"gpuRAM": "-",
|
492 |
-
"quantization": "bitsandbytes-nf4",
|
493 |
-
"container": "TGI 2.2.0",
|
494 |
-
"status": "KO",
|
495 |
-
"tokensPerSecond": "-",
|
496 |
-
"notes": "OOM, might work with a prequantized model",
|
497 |
-
},
|
498 |
-
{
|
499 |
-
"region": "us-west-2",
|
500 |
-
"instanceType": "c6i.2xlarge",
|
501 |
-
"cloud": "AWS",
|
502 |
-
"gpu": "-",
|
503 |
-
"gpuRAM": "-",
|
504 |
-
"quantization": "bitsandbytes-nf4",
|
505 |
-
"container": "TGI 2.2.0",
|
506 |
-
"status": "KO",
|
507 |
-
"tokensPerSecond": "-",
|
508 |
-
"notes": "OOM, might work with a prequantized model",
|
509 |
-
},
|
510 |
-
{
|
511 |
-
"region": "us-west-2",
|
512 |
-
"instanceType": "c6i.4xlarge",
|
513 |
-
"cloud": "AWS",
|
514 |
-
"gpu": "-",
|
515 |
-
"gpuRAM": "-",
|
516 |
-
"configurations": [
|
517 |
-
{
|
518 |
-
"quantization": "none",
|
519 |
-
"container": "TGI 2.2.0",
|
520 |
-
"status": "OK",
|
521 |
-
"tokensPerSecond": "10.7",
|
522 |
-
},
|
523 |
-
{
|
524 |
-
"quantization": "bitsandbytes (int8)",
|
525 |
-
"container": "TGI 2.2.0",
|
526 |
-
"status": "OK",
|
527 |
-
"tokensPerSecond": "10.5",
|
528 |
-
},
|
529 |
-
{
|
530 |
-
"quantization": "bitsandbytes-nf4",
|
531 |
-
"container": "TGI 2.2.0",
|
532 |
-
"status": "OK",
|
533 |
-
"tokensPerSecond": "10.6",
|
534 |
-
},
|
535 |
-
],
|
536 |
-
},
|
537 |
-
{
|
538 |
-
"region": "us-west-2",
|
539 |
-
"instanceType": "c7i.4xlarge",
|
540 |
-
"cloud": "AWS",
|
541 |
-
"gpu": "-",
|
542 |
-
"gpuRAM": "-",
|
543 |
-
"quantization": "none",
|
544 |
-
"container": "TGI 2.2.0",
|
545 |
-
"status": "waiting for quota",
|
546 |
-
"tokensPerSecond": "-",
|
547 |
-
},
|
548 |
-
{
|
549 |
-
"region": "us-west-2",
|
550 |
-
"instanceType": "g5.xlarge",
|
551 |
-
"cloud": "AWS",
|
552 |
-
"gpu": "1xNVIDIA A10G",
|
553 |
-
"gpuRAM": "24 GB",
|
554 |
-
"configurations": [
|
555 |
-
{
|
556 |
-
"quantization": "none",
|
557 |
-
"container": "TGI 2.2.0",
|
558 |
-
"status": "OK",
|
559 |
-
"tokensPerSecond": "110",
|
560 |
-
},
|
561 |
-
{
|
562 |
-
"quantization": "none",
|
563 |
-
"container": "DJL 0.28 vLLM",
|
564 |
-
"status": "OK",
|
565 |
-
"tokensPerSecond": "105",
|
566 |
-
"notes": '"OPTION_MAX_MODEL_LEN": "32768",',
|
567 |
-
},
|
568 |
-
],
|
569 |
-
},
|
570 |
-
{
|
571 |
-
"region": "us-west-2",
|
572 |
-
"instanceType": "g6e.2xlarge",
|
573 |
-
"cloud": "AWS",
|
574 |
-
"gpu": "1xNVIDIA L40S",
|
575 |
-
"gpuRAM": "48 GB",
|
576 |
-
"quantization": "none",
|
577 |
-
"container": "TGI 2.2.0",
|
578 |
-
"status": "OK",
|
579 |
-
"tokensPerSecond": "160",
|
580 |
-
},
|
581 |
-
{
|
582 |
-
"region": "us-west-2",
|
583 |
-
"instanceType": "g6e.2xlarge",
|
584 |
-
"cloud": "AWS",
|
585 |
-
"gpu": "1xNVIDIA L40S",
|
586 |
-
"gpuRAM": "48 GB",
|
587 |
-
"quantization": "none",
|
588 |
-
"container": "vLLM 0.5.5",
|
589 |
-
"status": "OK",
|
590 |
-
"tokensPerSecond": "146",
|
591 |
-
},
|
592 |
-
{
|
593 |
-
"region": "us-west-2",
|
594 |
-
"instanceType": "g6e.2xlarge",
|
595 |
-
"cloud": "AWS",
|
596 |
-
"gpu": "1xNVIDIA L40S",
|
597 |
-
"gpuRAM": "48 GB",
|
598 |
-
"quantization": "none",
|
599 |
-
"container": "SGLang 0.2.13",
|
600 |
-
"status": "OK",
|
601 |
-
"tokensPerSecond": "167",
|
602 |
-
},
|
603 |
-
],
|
604 |
-
},
|
605 |
-
{
|
606 |
-
"name": "Arcee-Scribe",
|
607 |
-
"modelType": "InternLM2.5 8B",
|
608 |
-
"configurations": [
|
609 |
-
{
|
610 |
-
"cloud": "AWS",
|
611 |
-
"instanceType": "g5.2xlarge",
|
612 |
-
"gpu": "1xNVIDIA A10G",
|
613 |
-
"gpuRAM": "24 GB",
|
614 |
-
"quantization": "none",
|
615 |
-
"container": "DJL 0.28 vLLM",
|
616 |
-
"status": "OK",
|
617 |
-
"tokensPerSecond": 29,
|
618 |
-
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
619 |
-
},
|
620 |
-
{
|
621 |
-
"cloud": "AWS",
|
622 |
-
"instanceType": "g5.12xlarge",
|
623 |
-
"gpu": "4xNVIDIA A10G",
|
624 |
-
"gpuRAM": "96 GB",
|
625 |
-
"quantization": "none",
|
626 |
-
"container": "DJL 0.28 vLLM",
|
627 |
-
"status": "OK",
|
628 |
-
"tokensPerSecond": 65,
|
629 |
-
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",\nNot supported by AutoAWQ and AutoGPTQ',
|
630 |
-
},
|
631 |
-
{
|
632 |
-
"cloud": "AWS",
|
633 |
-
"instanceType": "g5.48xlarge",
|
634 |
-
"gpu": "8xNVIDIA A10G",
|
635 |
-
"gpuRAM": "192 GB",
|
636 |
-
"quantization": "none",
|
637 |
-
"container": "DJL 0.28 vLLM",
|
638 |
-
"status": "OK",
|
639 |
-
"tokensPerSecond": 80,
|
640 |
-
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
641 |
-
},
|
642 |
-
{
|
643 |
-
"cloud": "AWS",
|
644 |
-
"instanceType": "g6.2xlarge",
|
645 |
-
"gpu": "1xNVIDIA L4",
|
646 |
-
"gpuRAM": "24 GB",
|
647 |
-
"quantization": "none",
|
648 |
-
"container": "DJL 0.28 vLLM",
|
649 |
-
"status": "OK",
|
650 |
-
"tokensPerSecond": 16,
|
651 |
-
"notes": '"OPTION_MAX_MODEL_LEN": "4096"',
|
652 |
-
},
|
653 |
-
{
|
654 |
-
"cloud": "AWS",
|
655 |
-
"instanceType": "g6.12xlarge",
|
656 |
-
"gpu": "4xNVIDIA L4",
|
657 |
-
"gpuRAM": "96 GB",
|
658 |
-
"quantization": "none",
|
659 |
-
"container": "DJL 0.28 vLLM",
|
660 |
-
"status": "OK",
|
661 |
-
"tokensPerSecond": 50,
|
662 |
-
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
663 |
-
},
|
664 |
-
{
|
665 |
-
"cloud": "AWS",
|
666 |
-
"instanceType": "g6.48xlarge",
|
667 |
-
"gpu": "8xNVIDIA L4",
|
668 |
-
"gpuRAM": "192 GB",
|
669 |
-
"quantization": "none",
|
670 |
-
"container": "DJL 0.28 vLLM",
|
671 |
-
"status": "OK",
|
672 |
-
"tokensPerSecond": 69,
|
673 |
-
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
674 |
-
},
|
675 |
-
{
|
676 |
-
"cloud": "AWS",
|
677 |
-
"instanceType": "g6e.2xlarge",
|
678 |
-
"gpu": "1xNVIDIA L40S",
|
679 |
-
"gpuRAM": "48 GB",
|
680 |
-
"quantization": "none",
|
681 |
-
"container": "SGLang 0.2.13",
|
682 |
-
"status": "OK",
|
683 |
-
"tokensPerSecond": 46,
|
684 |
-
},
|
685 |
-
{
|
686 |
-
"cloud": "AWS",
|
687 |
-
"instanceType": "p4d.24xlarge",
|
688 |
-
"gpu": "4xNVIDIA A100",
|
689 |
-
"gpuRAM": "320 GB",
|
690 |
-
"quantization": "none",
|
691 |
-
"container": "DJL 0.28 vLLM",
|
692 |
-
"status": "OK",
|
693 |
-
"tokensPerSecond": 82,
|
694 |
-
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
695 |
-
},
|
696 |
-
],
|
697 |
-
},
|
698 |
]
|
699 |
}
|
|
|
1 |
"""Module containing model configuration results for various AI models and hardware setups."""
|
2 |
|
3 |
+
from results_arcee_agent import results_arcee_agent
|
4 |
+
from results_arcee_lite import results_arcee_lite
|
5 |
+
from results_arcee_meraj import results_arcee_meraj
|
6 |
+
from results_arcee_nova import results_arcee_nova
|
7 |
+
from results_arcee_scribe import results_arcee_scribe
|
8 |
+
from results_arcee_spark import results_arcee_spark
|
9 |
+
from results_arcee_supernova import results_arcee_supernova
|
10 |
+
from results_llama_spark import results_llama_spark
|
11 |
+
|
12 |
+
instance_type_mappings = {
|
13 |
+
"g5.xlarge": {"cloud": "AWS", "gpu": "1xNVIDIA A10G", "gpuRAM": "24 GB"},
|
14 |
+
"g5.2xlarge": {"cloud": "AWS", "gpu": "1xNVIDIA A10G", "gpuRAM": "24 GB"},
|
15 |
+
"g5.12xlarge": {"cloud": "AWS", "gpu": "4xNVIDIA A10G", "gpuRAM": "96 GB"},
|
16 |
+
"g5.48xlarge": {"cloud": "AWS", "gpu": "8xNVIDIA A10G", "gpuRAM": "192 GB"},
|
17 |
+
"g6.2xlarge": {"cloud": "AWS", "gpu": "1xNVIDIA L4", "gpuRAM": "24 GB"},
|
18 |
+
"g6.12xlarge": {"cloud": "AWS", "gpu": "4xNVIDIA L4", "gpuRAM": "96 GB"},
|
19 |
+
"g6.48xlarge": {"cloud": "AWS", "gpu": "8xNVIDIA L4", "gpuRAM": "192 GB"},
|
20 |
+
"g6e.2xlarge": {"cloud": "AWS", "gpu": "1xNVIDIA L40S", "gpuRAM": "48 GB"},
|
21 |
+
"g4dn.12xlarge": {"cloud": "AWS", "gpu": "4xNVIDIA T4", "gpuRAM": "64 GB"},
|
22 |
+
"p4d.24xlarge": {"cloud": "AWS", "gpu": "4xNVIDIA A100", "gpuRAM": "320 GB"},
|
23 |
+
"p4de.24xlarge": {"cloud": "AWS", "gpu": "8xNVIDIA A100", "gpuRAM": "320 GB"},
|
24 |
+
"p5.48xlarge": {"cloud": "AWS", "gpu": "8xNVIDIA H100", "gpuRAM": "640GB"},
|
25 |
+
"c6i.xlarge": {"cloud": "AWS", "gpu": "-", "gpuRAM": "-"},
|
26 |
+
"c6i.2xlarge": {"cloud": "AWS", "gpu": "-", "gpuRAM": "-"},
|
27 |
+
"c6i.4xlarge": {"cloud": "AWS", "gpu": "-", "gpuRAM": "-"},
|
28 |
+
"c7i.4xlarge": {"cloud": "AWS", "gpu": "-", "gpuRAM": "-"},
|
29 |
+
"inf2.*": {"cloud": "AWS", "gpu": "-", "gpuRAM": "-"},
|
30 |
+
}
|
31 |
+
|
32 |
results = {
|
33 |
"models": [
|
34 |
+
results_arcee_meraj,
|
35 |
+
results_arcee_supernova,
|
36 |
+
results_arcee_nova,
|
37 |
+
results_llama_spark,
|
38 |
+
results_arcee_agent,
|
39 |
+
results_arcee_spark,
|
40 |
+
results_arcee_lite,
|
41 |
+
results_arcee_scribe,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
]
|
43 |
}
|
results_arcee_agent.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing performance results for the Arcee-Agent model."""
|
2 |
+
|
3 |
+
results_arcee_agent = {
|
4 |
+
"name": "Arcee-Agent",
|
5 |
+
"modelType": "Qwen2 7B",
|
6 |
+
"notes": "",
|
7 |
+
"configurations": [
|
8 |
+
{
|
9 |
+
"instanceType": "g5.2xlarge",
|
10 |
+
"quantization": "none",
|
11 |
+
"container": "TGI 2.2.0",
|
12 |
+
"status": "OK",
|
13 |
+
"tokensPerSecond": "30",
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"instanceType": "g5.12xlarge",
|
17 |
+
"quantization": "none",
|
18 |
+
"container": "TGI 2.2.0",
|
19 |
+
"status": "OK",
|
20 |
+
"tokensPerSecond": "83",
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"instanceType": "g5.48xlarge",
|
24 |
+
"quantization": "none",
|
25 |
+
"container": "TGI 2.2.0",
|
26 |
+
"status": "KO",
|
27 |
+
"tokensPerSecond": "-",
|
28 |
+
"notes": "ValueError: `num_heads` must be divisible by `num_shards` (got `num_heads`: 28 and `num_shards`: 8\n\nSM_NUM_GPUS=7 doesn't work either because tensor size ares not a multiple of 7 (e.g., 512)",
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"instanceType": "g6.2xlarge",
|
32 |
+
"quantization": "none",
|
33 |
+
"container": "TGI 2.2.0",
|
34 |
+
"status": "OK",
|
35 |
+
"tokensPerSecond": "16.3",
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"instanceType": "g6.12xlarge",
|
39 |
+
"quantization": "none",
|
40 |
+
"container": "TGI 2.2.0",
|
41 |
+
"status": "OK",
|
42 |
+
"tokensPerSecond": "54.2",
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"instanceType": "inf2.*",
|
46 |
+
"container": "TGI 2.2.0",
|
47 |
+
"status": "not supported",
|
48 |
+
"tokensPerSecond": "-",
|
49 |
+
"notes": "Qwen2: TGI OK, Neuron SDK KO, optimum-neuron KO",
|
50 |
+
},
|
51 |
+
{
|
52 |
+
"instanceType": "g6e.2xlarge",
|
53 |
+
"configurations": [
|
54 |
+
{
|
55 |
+
"container": "TGI 2.2.0",
|
56 |
+
"quantization": "none",
|
57 |
+
"status": "OK",
|
58 |
+
"tokensPerSecond": "45",
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"container": "SGLang 0.2.13",
|
62 |
+
"quantization": "none",
|
63 |
+
"status": "OK",
|
64 |
+
"tokensPerSecond": "48",
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"container": "vLLM 0.5.5",
|
68 |
+
"quantization": "none",
|
69 |
+
"status": "OK",
|
70 |
+
"tokensPerSecond": "45.7",
|
71 |
+
},
|
72 |
+
],
|
73 |
+
},
|
74 |
+
],
|
75 |
+
}
|
results_arcee_lite.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing performance results for the Arcee-Lite model."""
|
2 |
+
|
3 |
+
results_arcee_lite = {
|
4 |
+
"name": "Arcee-Lite",
|
5 |
+
"modelType": "Qwen2 1.5B distilled from phi-3-medium 14B",
|
6 |
+
"configurations": [
|
7 |
+
{
|
8 |
+
"instanceType": "c6i.xlarge",
|
9 |
+
"quantization": "bitsandbytes-nf4",
|
10 |
+
"container": "TGI 2.2.0",
|
11 |
+
"status": "KO",
|
12 |
+
"tokensPerSecond": "-",
|
13 |
+
"notes": "OOM, might work with a prequantized model",
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"instanceType": "c6i.2xlarge",
|
17 |
+
"quantization": "bitsandbytes-nf4",
|
18 |
+
"container": "TGI 2.2.0",
|
19 |
+
"status": "KO",
|
20 |
+
"tokensPerSecond": "-",
|
21 |
+
"notes": "OOM, might work with a prequantized model",
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"instanceType": "c6i.4xlarge",
|
25 |
+
"configurations": [
|
26 |
+
{
|
27 |
+
"quantization": "none",
|
28 |
+
"container": "TGI 2.2.0",
|
29 |
+
"status": "OK",
|
30 |
+
"tokensPerSecond": "10.7",
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"quantization": "bitsandbytes (int8)",
|
34 |
+
"container": "TGI 2.2.0",
|
35 |
+
"status": "OK",
|
36 |
+
"tokensPerSecond": "10.5",
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"quantization": "bitsandbytes-nf4",
|
40 |
+
"container": "TGI 2.2.0",
|
41 |
+
"status": "OK",
|
42 |
+
"tokensPerSecond": "10.6",
|
43 |
+
},
|
44 |
+
],
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"instanceType": "c7i.4xlarge",
|
48 |
+
"quantization": "none",
|
49 |
+
"container": "TGI 2.2.0",
|
50 |
+
"status": "waiting for quota",
|
51 |
+
"tokensPerSecond": "-",
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"instanceType": "g5.xlarge",
|
55 |
+
"configurations": [
|
56 |
+
{
|
57 |
+
"quantization": "none",
|
58 |
+
"container": "TGI 2.2.0",
|
59 |
+
"status": "OK",
|
60 |
+
"tokensPerSecond": "110",
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"quantization": "none",
|
64 |
+
"container": "DJL 0.28 vLLM",
|
65 |
+
"status": "OK",
|
66 |
+
"tokensPerSecond": "105",
|
67 |
+
"notes": '"OPTION_MAX_MODEL_LEN": "32768",',
|
68 |
+
},
|
69 |
+
],
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"instanceType": "g6e.2xlarge",
|
73 |
+
"configurations": [
|
74 |
+
{
|
75 |
+
"container": "TGI 2.2.0",
|
76 |
+
"quantization": "none",
|
77 |
+
"status": "OK",
|
78 |
+
"tokensPerSecond": "160",
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"container": "SGLang 0.2.13",
|
82 |
+
"quantization": "none",
|
83 |
+
"status": "OK",
|
84 |
+
"tokensPerSecond": "167",
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"container": "vLLM 0.5.5",
|
88 |
+
"quantization": "none",
|
89 |
+
"status": "OK",
|
90 |
+
"tokensPerSecond": "150",
|
91 |
+
},
|
92 |
+
],
|
93 |
+
},
|
94 |
+
],
|
95 |
+
}
|
results_arcee_meraj.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing performance results for the Arcee-Meraj model."""
|
2 |
+
|
3 |
+
results_arcee_meraj = {
|
4 |
+
"name": "Arcee-Meraj",
|
5 |
+
"modelType": "Qwen2 72B",
|
6 |
+
"configurations": [
|
7 |
+
{
|
8 |
+
"instanceType": "g5.12xlarge",
|
9 |
+
"quantization": "awq",
|
10 |
+
"container": "TGI 2.2.0",
|
11 |
+
"status": "OK",
|
12 |
+
"tokensPerSecond": "33",
|
13 |
+
"notes": "",
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"instanceType": "p4d.24xlarge",
|
17 |
+
"quantization": "none",
|
18 |
+
"container": "TGI 2.2.0",
|
19 |
+
"status": "OK",
|
20 |
+
"tokensPerSecond": "38",
|
21 |
+
"notes": "",
|
22 |
+
},
|
23 |
+
],
|
24 |
+
}
|
results_arcee_nova.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing performance results for the Arcee-Nova model."""
|
2 |
+
|
3 |
+
results_arcee_nova = {
|
4 |
+
"name": "Arcee-Nova",
|
5 |
+
"modelType": "Qwen2 72B",
|
6 |
+
"notes": "",
|
7 |
+
"configurations": [
|
8 |
+
{
|
9 |
+
"instanceType": "g4dn.12xlarge",
|
10 |
+
"quantization": "bitsandbytes-nf4",
|
11 |
+
"container": "TGI 2.2.0",
|
12 |
+
"status": "KO",
|
13 |
+
"tokensPerSecond": "-",
|
14 |
+
"notes": "Flash Attention requires Ampere GPUs or newer",
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"instanceType": "g5.12xlarge",
|
18 |
+
"configurations": [
|
19 |
+
{
|
20 |
+
"quantization": "bitsandbytes-nf4",
|
21 |
+
"container": "TGI 2.2.0",
|
22 |
+
"status": "OK",
|
23 |
+
"tokensPerSecond": "12",
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"quantization": "bitsandbytes-fp4",
|
27 |
+
"container": "TGI 2.2.0",
|
28 |
+
"status": "OK",
|
29 |
+
"tokensPerSecond": "12",
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"quantization": "bitsandbytes (int8)",
|
33 |
+
"container": "TGI 2.2.0",
|
34 |
+
"status": "KO",
|
35 |
+
"tokensPerSecond": "-",
|
36 |
+
"notes": "CUDA OOM",
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"quantization": "eetq (int8)",
|
40 |
+
"container": "TGI 2.2.0",
|
41 |
+
"status": "KO",
|
42 |
+
"tokensPerSecond": "-",
|
43 |
+
"notes": "[FT Error] Heurisitc failed to find a valid config.",
|
44 |
+
},
|
45 |
+
],
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"instanceType": "g5.48xlarge",
|
49 |
+
"configurations": [
|
50 |
+
{
|
51 |
+
"quantization": "none",
|
52 |
+
"container": "TGI 2.2.0",
|
53 |
+
"status": "KO",
|
54 |
+
"tokensPerSecond": "-",
|
55 |
+
"notes": "CUDA OOM (but g6.48xlarge works!)",
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"quantization": "bitsandbytes-nf4",
|
59 |
+
"container": "TGI 2.2.0",
|
60 |
+
"status": "OK",
|
61 |
+
"tokensPerSecond": "12.3",
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"quantization": "bitsandbytes-fp4",
|
65 |
+
"container": "TGI 2.2.0",
|
66 |
+
"status": "OK",
|
67 |
+
"tokensPerSecond": "12.5",
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"quantization": "bitsandbytes (int8)",
|
71 |
+
"container": "TGI 2.2.0",
|
72 |
+
"status": "KO",
|
73 |
+
"tokensPerSecond": "-",
|
74 |
+
"notes": "The model deploys, but inference times out.",
|
75 |
+
},
|
76 |
+
],
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"instanceType": "g6.12xlarge",
|
80 |
+
"configurations": [
|
81 |
+
{
|
82 |
+
"quantization": "bitsandbytes-nf4",
|
83 |
+
"container": "TGI 2.2.0",
|
84 |
+
"status": "OK",
|
85 |
+
"tokensPerSecond": "1.5-2",
|
86 |
+
"notes": "Too slow, timeouts are likely",
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"quantization": "bitsandbytes-fp4",
|
90 |
+
"container": "TGI 2.2.0",
|
91 |
+
"status": "OK",
|
92 |
+
"tokensPerSecond": "2",
|
93 |
+
"notes": "Too slow, timeouts are likely",
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"quantization": "bitsandbytes (int8)",
|
97 |
+
"container": "TGI 2.2.0",
|
98 |
+
"status": "KO",
|
99 |
+
"tokensPerSecond": "-",
|
100 |
+
"notes": "CUDA OOM",
|
101 |
+
},
|
102 |
+
],
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"instanceType": "g6.48xlarge",
|
106 |
+
"quantization": "none",
|
107 |
+
"container": "TGI 2.2.0",
|
108 |
+
"status": "OK",
|
109 |
+
"tokensPerSecond": "12",
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"instanceType": "p4d.24xlarge",
|
113 |
+
"quantization": "none",
|
114 |
+
"container": "TGI 2.2.0",
|
115 |
+
"status": "OK",
|
116 |
+
"tokensPerSecond": "40",
|
117 |
+
"notes": '"MAX_INPUT_LENGTH": "16384", "MAX_TOTAL_TOKENS": "32768",',
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"instanceType": "p4de.24xlarge",
|
121 |
+
"quantization": "none",
|
122 |
+
"container": "TGI 2.2.0",
|
123 |
+
"status": "waiting for quota",
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"instanceType": "p5.48xlarge",
|
127 |
+
"quantization": "none",
|
128 |
+
"container": "TGI 2.2.0",
|
129 |
+
"status": "OK",
|
130 |
+
"tokensPerSecond": "58",
|
131 |
+
"notes": '"MAX_INPUT_LENGTH": "16384", "MAX_TOTAL_TOKENS": "32768",',
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"instanceType": "inf2.*",
|
135 |
+
"container": "TGI 2.2.0",
|
136 |
+
"status": "not supported",
|
137 |
+
"tokensPerSecond": "-",
|
138 |
+
"notes": "Qwen2: TGI OK, Neuron SDK KO, optimum-neuron KO",
|
139 |
+
},
|
140 |
+
],
|
141 |
+
}
|
results_arcee_scribe.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing performance results for the Arcee-Scribe model."""
|
2 |
+
|
3 |
+
results_arcee_scribe = {
|
4 |
+
"name": "Arcee-Scribe",
|
5 |
+
"modelType": "InternLM2.5 8B",
|
6 |
+
"configurations": [
|
7 |
+
{
|
8 |
+
"instanceType": "g5.2xlarge",
|
9 |
+
"quantization": "none",
|
10 |
+
"container": "DJL 0.28 vLLM",
|
11 |
+
"status": "OK",
|
12 |
+
"tokensPerSecond": 29,
|
13 |
+
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"instanceType": "g5.12xlarge",
|
17 |
+
"quantization": "none",
|
18 |
+
"container": "DJL 0.28 vLLM",
|
19 |
+
"status": "OK",
|
20 |
+
"tokensPerSecond": 65,
|
21 |
+
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",\nNot supported by AutoAWQ and AutoGPTQ',
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"instanceType": "g5.48xlarge",
|
25 |
+
"quantization": "none",
|
26 |
+
"container": "DJL 0.28 vLLM",
|
27 |
+
"status": "OK",
|
28 |
+
"tokensPerSecond": 80,
|
29 |
+
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"instanceType": "g6.2xlarge",
|
33 |
+
"quantization": "none",
|
34 |
+
"container": "DJL 0.28 vLLM",
|
35 |
+
"status": "OK",
|
36 |
+
"tokensPerSecond": 16,
|
37 |
+
"notes": '"OPTION_MAX_MODEL_LEN": "4096"',
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"instanceType": "g6.12xlarge",
|
41 |
+
"quantization": "none",
|
42 |
+
"container": "DJL 0.28 vLLM",
|
43 |
+
"status": "OK",
|
44 |
+
"tokensPerSecond": 50,
|
45 |
+
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"instanceType": "g6.48xlarge",
|
49 |
+
"quantization": "none",
|
50 |
+
"container": "DJL 0.28 vLLM",
|
51 |
+
"status": "OK",
|
52 |
+
"tokensPerSecond": 69,
|
53 |
+
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"instanceType": "g6e.2xlarge",
|
57 |
+
"quantization": "none",
|
58 |
+
"container": "SGLang 0.2.13",
|
59 |
+
"status": "OK",
|
60 |
+
"tokensPerSecond": 46,
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"instanceType": "p4d.24xlarge",
|
64 |
+
"quantization": "none",
|
65 |
+
"container": "DJL 0.28 vLLM",
|
66 |
+
"status": "OK",
|
67 |
+
"tokensPerSecond": 82,
|
68 |
+
"notes": '"OPTION_MAX_MODEL_LEN": "32768",\n"TENSOR_PARALLEL_DEGREE": "max",',
|
69 |
+
},
|
70 |
+
],
|
71 |
+
}
|
results_arcee_spark.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing performance results for the Arcee-Spark model."""
|
2 |
+
|
3 |
+
results_arcee_spark = {"name": "Arcee-Spark", "modelType": "Qwen2 7B"}
|
results_arcee_supernova.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing performance results for the Arcee-SuperNova model."""
|
2 |
+
|
3 |
+
results_arcee_supernova = {
|
4 |
+
"name": "Arcee-SuperNova",
|
5 |
+
"modelType": "Llama 3.1 70B",
|
6 |
+
"configurations": [
|
7 |
+
{
|
8 |
+
"instanceType": "g5.12xlarge",
|
9 |
+
"quantization": "awq",
|
10 |
+
"container": "TGI 2.2.0",
|
11 |
+
"status": "OK",
|
12 |
+
"tokensPerSecond": "33",
|
13 |
+
"notes": "",
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"instanceType": "p4d.24xlarge",
|
17 |
+
"quantization": "none",
|
18 |
+
"container": "TGI 2.2.0",
|
19 |
+
"status": "OK",
|
20 |
+
"tokensPerSecond": "38",
|
21 |
+
"notes": "",
|
22 |
+
},
|
23 |
+
],
|
24 |
+
}
|
results_llama_spark.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module containing performance results for the Llama-Spark model."""
|
2 |
+
|
3 |
+
results_llama_spark = {
|
4 |
+
"name": "Llama-Spark",
|
5 |
+
"modelType": "Llama 3.1 8B",
|
6 |
+
"configurations": [
|
7 |
+
{
|
8 |
+
"instanceType": "g5.2xlarge",
|
9 |
+
"quantization": "none",
|
10 |
+
"container": "TGI 2.2.0",
|
11 |
+
"status": "OK",
|
12 |
+
"tokensPerSecond": "29",
|
13 |
+
"notes": "4K/8K fails",
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"instanceType": "g5.12xlarge",
|
17 |
+
"quantization": "none",
|
18 |
+
"container": "TGI 2.2.0",
|
19 |
+
"status": "OK",
|
20 |
+
"tokensPerSecond": "85",
|
21 |
+
"notes": '"MAX_INPUT_TOKENS": "16384", "MAX_TOTAL_TOKENS": "32768",',
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"instanceType": "g5.48xlarge",
|
25 |
+
"quantization": "none",
|
26 |
+
"container": "TGI 2.2.0",
|
27 |
+
"status": "OK",
|
28 |
+
"tokensPerSecond": "105",
|
29 |
+
"notes": '"MAX_INPUT_TOKENS": "20480", "MAX_TOTAL_TOKENS": "40960"\n\n32K/64K fails',
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"instanceType": "g6.12xlarge",
|
33 |
+
"quantization": "none",
|
34 |
+
"container": "TGI 2.2.0",
|
35 |
+
"status": "OK",
|
36 |
+
"tokensPerSecond": "51",
|
37 |
+
"notes": "same as g5?",
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"instanceType": "g6.48xlarge",
|
41 |
+
"quantization": "none",
|
42 |
+
"container": "TGI 2.2.0",
|
43 |
+
"status": "OK",
|
44 |
+
"tokensPerSecond": "81",
|
45 |
+
"notes": "same as g5?",
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"instanceType": "g6e.2xlarge",
|
49 |
+
"quantization": "none",
|
50 |
+
"status": "OK",
|
51 |
+
"configurations": [
|
52 |
+
{"container": "TGI 2.2.0", "tokensPerSecond": "42.1"},
|
53 |
+
{"container": "SGLang 0.2.13", "tokensPerSecond": "45"},
|
54 |
+
{"container": "vLLM 0.5.5", "tokensPerSecond": "43.4"},
|
55 |
+
],
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"instanceType": "p4d.24xlarge",
|
59 |
+
"quantization": "none",
|
60 |
+
"container": "TGI 2.2.0",
|
61 |
+
"status": "OK",
|
62 |
+
"tokensPerSecond": "145",
|
63 |
+
"notes": '"MAX_INPUT_TOKENS": "40960", "MAX_TOTAL_TOKENS": "81920"\n\n64K/128K fails (even with 4-bit)',
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"instanceType": "inf2.*",
|
67 |
+
"container": "TGI 2.2.0",
|
68 |
+
"status": "not supported",
|
69 |
+
"tokensPerSecond": "-",
|
70 |
+
"notes": "Llama-3.1: TGI OK, Neuron SDK OK, optimum-neuron KO",
|
71 |
+
},
|
72 |
+
],
|
73 |
+
}
|