Spaces:
Runtime error
Runtime error
ort nightly
Browse files- app.py +2 -285
- requirements.txt +2 -1
- src/infer_pack/attentions.py +3 -3
- src/infer_pack/models.py +6 -6
- src/infer_pack/modules.py +3 -3
- src/main.py +2 -2
- src/rvc.py +3 -3
- src/webui.py +287 -0
app.py
CHANGED
@@ -1,287 +1,4 @@
|
|
1 |
-
import json
|
2 |
import os
|
3 |
-
import shutil
|
4 |
-
import urllib.request
|
5 |
-
import zipfile
|
6 |
-
import gdown
|
7 |
-
from argparse import ArgumentParser
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
from src.main import song_cover_pipeline
|
13 |
-
|
14 |
-
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
15 |
-
|
16 |
-
mdxnet_models_dir = 'mdxnet_models'
|
17 |
-
rvc_models_dir = 'rvc_models'
|
18 |
-
output_dir = 'song_output'
|
19 |
-
|
20 |
-
def download_and_extract_model(model_url, model_name, progress=gr.Progress()):
|
21 |
-
try:
|
22 |
-
os.makedirs(rvc_models_dir, exist_ok=True)
|
23 |
-
|
24 |
-
extraction_folder = os.path.join(rvc_models_dir, model_name)
|
25 |
-
zip_path = os.path.join(rvc_models_dir, f'{model_name}.zip')
|
26 |
-
|
27 |
-
if os.path.exists(extraction_folder):
|
28 |
-
raise gr.Error(f'Voice model directory {model_name} already exists! Choose a different name for your voice model.')
|
29 |
-
|
30 |
-
progress(0, desc=f'[~] Downloading voice model with name {model_name}...')
|
31 |
-
|
32 |
-
try:
|
33 |
-
if 'huggingface.co' in model_url:
|
34 |
-
urllib.request.urlretrieve(model_url, zip_path)
|
35 |
-
elif 'pixeldrain.com' in model_url:
|
36 |
-
pixeldrain_id = model_url.split('/')[-1]
|
37 |
-
pixeldrain_url = f'https://pixeldrain.com/api/file/{pixeldrain_id}'
|
38 |
-
urllib.request.urlretrieve(pixeldrain_url, zip_path)
|
39 |
-
elif 'drive.google.com' in model_url:
|
40 |
-
file_id = model_url.split('/')[-2]
|
41 |
-
gdown.download(id=file_id, output=zip_path, quiet=False)
|
42 |
-
else:
|
43 |
-
urllib.request.urlretrieve(model_url, zip_path)
|
44 |
-
except Exception as download_error:
|
45 |
-
raise gr.Error(f"Failed to download the model: {str(download_error)}")
|
46 |
-
|
47 |
-
if not os.path.exists(zip_path):
|
48 |
-
raise gr.Error(f"Failed to download the model. The zip file was not created.")
|
49 |
-
|
50 |
-
progress(0.5, desc="Extracting model...")
|
51 |
-
extract_zip(extraction_folder, zip_path)
|
52 |
-
|
53 |
-
pth_files = [f for f in os.listdir(extraction_folder) if f.endswith('.pth')]
|
54 |
-
if not pth_files:
|
55 |
-
raise ValueError("No .pth file found in the downloaded model.")
|
56 |
-
|
57 |
-
progress(1, desc="Model ready")
|
58 |
-
return model_name
|
59 |
-
|
60 |
-
except Exception as e:
|
61 |
-
if os.path.exists(extraction_folder):
|
62 |
-
shutil.rmtree(extraction_folder)
|
63 |
-
if os.path.exists(zip_path):
|
64 |
-
os.remove(zip_path)
|
65 |
-
raise gr.Error(f"Error downloading or extracting model: {str(e)}")
|
66 |
-
|
67 |
-
def cleanup_temp_model(model_name):
|
68 |
-
temp_dir = os.path.join(rvc_models_dir, model_name)
|
69 |
-
try:
|
70 |
-
shutil.rmtree(temp_dir)
|
71 |
-
except Exception as e:
|
72 |
-
print(f"Error cleaning up temporary model files: {str(e)}")
|
73 |
-
|
74 |
-
def extract_zip(extraction_folder, zip_name):
|
75 |
-
os.makedirs(extraction_folder)
|
76 |
-
with zipfile.ZipFile(zip_name, 'r') as zip_ref:
|
77 |
-
zip_ref.extractall(extraction_folder)
|
78 |
-
os.remove(zip_name)
|
79 |
-
|
80 |
-
index_filepath, model_filepath = None, None
|
81 |
-
for root, dirs, files in os.walk(extraction_folder):
|
82 |
-
for name in files:
|
83 |
-
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
|
84 |
-
index_filepath = os.path.join(root, name)
|
85 |
-
|
86 |
-
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
|
87 |
-
model_filepath = os.path.join(root, name)
|
88 |
-
|
89 |
-
if not model_filepath:
|
90 |
-
raise gr.Error(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
|
91 |
-
|
92 |
-
# move model and index file to extraction folder
|
93 |
-
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
|
94 |
-
if index_filepath:
|
95 |
-
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
|
96 |
-
|
97 |
-
# remove any unnecessary nested folders
|
98 |
-
for filepath in os.listdir(extraction_folder):
|
99 |
-
if os.path.isdir(os.path.join(extraction_folder, filepath)):
|
100 |
-
shutil.rmtree(os.path.join(extraction_folder, filepath))
|
101 |
-
|
102 |
-
|
103 |
-
def download_online_model(url, dir_name, progress=gr.Progress()):
|
104 |
-
try:
|
105 |
-
progress(0, desc=f'[~] Downloading voice model with name {dir_name}...')
|
106 |
-
zip_name = url.split('/')[-1]
|
107 |
-
extraction_folder = os.path.join(rvc_models_dir, dir_name)
|
108 |
-
if os.path.exists(extraction_folder):
|
109 |
-
raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
|
110 |
-
|
111 |
-
if 'huggingface.co' in url:
|
112 |
-
urllib.request.urlretrieve(url, zip_name)
|
113 |
-
|
114 |
-
if 'pixeldrain.com' in url:
|
115 |
-
zip_name = dir_name + '.zip'
|
116 |
-
url = f'https://pixeldrain.com/api/file/{zip_name}'
|
117 |
-
urllib.request.urlretrieve(url, zip_name)
|
118 |
-
|
119 |
-
elif 'drive.google.com' in url:
|
120 |
-
# Extract the Google Drive file ID
|
121 |
-
zip_name = dir_name + '.zip'
|
122 |
-
file_id = url.split('/')[-2]
|
123 |
-
output = os.path.join('.', f'{dir_name}.zip') # Adjust the output path if needed
|
124 |
-
gdown.download(id=file_id, output=output, quiet=False)
|
125 |
-
|
126 |
-
progress(0.5, desc='[~] Extracting zip...')
|
127 |
-
extract_zip(extraction_folder, zip_name)
|
128 |
-
return f'[+] {dir_name} Model successfully downloaded!'
|
129 |
-
|
130 |
-
except Exception as e:
|
131 |
-
raise gr.Error(str(e))
|
132 |
-
|
133 |
-
|
134 |
-
def upload_local_model(zip_path, dir_name, progress=gr.Progress()):
|
135 |
-
try:
|
136 |
-
extraction_folder = os.path.join(rvc_models_dir, dir_name)
|
137 |
-
if os.path.exists(extraction_folder):
|
138 |
-
raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
|
139 |
-
|
140 |
-
zip_name = zip_path.name
|
141 |
-
progress(0.5, desc='[~] Extracting zip...')
|
142 |
-
extract_zip(extraction_folder, zip_name)
|
143 |
-
return f'[+] {dir_name} Model successfully uploaded!'
|
144 |
-
|
145 |
-
except Exception as e:
|
146 |
-
raise gr.Error(str(e))
|
147 |
-
|
148 |
-
def pub_dl_autofill(pub_models, event: gr.SelectData):
|
149 |
-
return gr.Text.update(value=pub_models.loc[event.index[0], 'URL']), gr.Text.update(value=pub_models.loc[event.index[0], 'Model Name'])
|
150 |
-
|
151 |
-
|
152 |
-
def swap_visibility():
|
153 |
-
return gr.update(visible=True), gr.update(visible=False), gr.update(value=''), gr.update(value=None)
|
154 |
-
|
155 |
-
|
156 |
-
def process_file_upload(file):
|
157 |
-
return file.name, gr.update(value=file.name)
|
158 |
-
|
159 |
-
|
160 |
-
def show_hop_slider(pitch_detection_algo):
|
161 |
-
if pitch_detection_algo == 'mangio-crepe':
|
162 |
-
return gr.update(visible=True)
|
163 |
-
else:
|
164 |
-
return gr.update(visible=False)
|
165 |
-
|
166 |
-
|
167 |
-
def song_cover_pipeline_with_model_download(song_input, model_url, model_name, pitch, keep_files, is_webui, main_gain, backup_gain,
|
168 |
-
inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
|
169 |
-
protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
|
170 |
-
output_format, progress=gr.Progress()):
|
171 |
-
model_path = None
|
172 |
-
try:
|
173 |
-
model_path = download_and_extract_model(model_url, model_name, progress)
|
174 |
-
print(f"Model path: {model_path}")
|
175 |
-
result = song_cover_pipeline(song_input, model_path, pitch, keep_files, is_webui, main_gain, backup_gain,
|
176 |
-
inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
|
177 |
-
protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
|
178 |
-
output_format, progress)
|
179 |
-
|
180 |
-
# Clean up old folders in song_output
|
181 |
-
output_folders = [f for f in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, f))]
|
182 |
-
output_folders.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)))
|
183 |
-
|
184 |
-
while len(output_folders) > 100:
|
185 |
-
oldest_folder = output_folders.pop(0)
|
186 |
-
shutil.rmtree(os.path.join(output_dir, oldest_folder))
|
187 |
-
|
188 |
-
return result
|
189 |
-
except gr.Error as e:
|
190 |
-
return str(e), None # Return error message and None for the second output
|
191 |
-
finally:
|
192 |
-
if model_path:
|
193 |
-
cleanup_temp_model(model_path)
|
194 |
-
|
195 |
-
|
196 |
-
if __name__ == '__main__':
|
197 |
-
parser = ArgumentParser(description='Generate a AI cover song in the song_output/id directory.', add_help=True)
|
198 |
-
parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
|
199 |
-
parser.add_argument("--listen", action="store_true", default=False, help="Make the WebUI reachable from your local network.")
|
200 |
-
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
|
201 |
-
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
202 |
-
args = parser.parse_args()
|
203 |
-
|
204 |
-
with gr.Blocks(title='AICoverGenWebUI', theme='NoCrypt/miku@1.2.2') as app:
|
205 |
-
|
206 |
-
gr.Label('AICoverGen WebUI created with ❤️', show_label=False)
|
207 |
-
|
208 |
-
# main tab
|
209 |
-
with gr.Tab("Generate"):
|
210 |
-
|
211 |
-
with gr.Accordion('Main Options'):
|
212 |
-
with gr.Row():
|
213 |
-
with gr.Column():
|
214 |
-
model_url = gr.Text(label='Voice Model URL', info='Enter the URL of the voice model zip file', value='https://huggingface.co/megaaziib/my-rvc-models-collection/resolve/main/kobo.zip')
|
215 |
-
model_name = gr.Text(label='Voice Model Name', info='Enter the name of the voice model', value='kobo')
|
216 |
-
# rvc_model = gr.Dropdown(voice_models, label='Voice Models', info='Models folder "AICoverGen --> rvc_models". After new models are added into this folder, click the refresh button')
|
217 |
-
|
218 |
-
with gr.Column() as yt_link_col:
|
219 |
-
song_input = gr.Text(label='Song input', info='Link to a song on YouTube or full path to a local file. For file upload, click the button below.', value='https://youtu.be/FRh7LvlQTuA')
|
220 |
-
show_file_upload_button = gr.Button('Upload file instead')
|
221 |
-
|
222 |
-
with gr.Column(visible=False) as file_upload_col:
|
223 |
-
local_file = gr.File(label='Audio file')
|
224 |
-
song_input_file = gr.UploadButton('Upload 📂', file_types=['audio'], variant='primary')
|
225 |
-
show_yt_link_button = gr.Button('Paste YouTube link/Path to local file instead')
|
226 |
-
song_input_file.upload(process_file_upload, inputs=[song_input_file], outputs=[local_file, song_input])
|
227 |
-
|
228 |
-
with gr.Column():
|
229 |
-
pitch = gr.Slider(-24, 24, value=0, step=1, label='Pitch Change (Vocals ONLY)', info='Generally, use 12 for male to female conversions and -12 for vice-versa. (Octaves)')
|
230 |
-
pitch_all = gr.Slider(-12, 12, value=0, step=1, label='Overall Pitch Change', info='Changes pitch/key of vocals and instrumentals together. Altering this slightly reduces sound quality. (Semitones)')
|
231 |
-
show_file_upload_button.click(swap_visibility, outputs=[file_upload_col, yt_link_col, song_input, local_file])
|
232 |
-
show_yt_link_button.click(swap_visibility, outputs=[yt_link_col, file_upload_col, song_input, local_file])
|
233 |
-
|
234 |
-
with gr.Accordion('Voice conversion options', open=False):
|
235 |
-
with gr.Row():
|
236 |
-
index_rate = gr.Slider(0, 1, value=0.5, label='Index Rate', info="Controls how much of the AI voice's accent to keep in the vocals")
|
237 |
-
filter_radius = gr.Slider(0, 7, value=3, step=1, label='Filter radius', info='If >=3: apply median filtering median filtering to the harvested pitch results. Can reduce breathiness')
|
238 |
-
rms_mix_rate = gr.Slider(0, 1, value=0.25, label='RMS mix rate', info="Control how much to mimic the original vocal's loudness (0) or a fixed loudness (1)")
|
239 |
-
protect = gr.Slider(0, 0.5, value=0.33, label='Protect rate', info='Protect voiceless consonants and breath sounds. Set to 0.5 to disable.')
|
240 |
-
with gr.Column():
|
241 |
-
f0_method = gr.Dropdown(['rmvpe', 'mangio-crepe'], value='rmvpe', label='Pitch detection algorithm', info='Best option is rmvpe (clarity in vocals), then mangio-crepe (smoother vocals)')
|
242 |
-
crepe_hop_length = gr.Slider(32, 320, value=128, step=1, visible=False, label='Crepe hop length', info='Lower values leads to longer conversions and higher risk of voice cracks, but better pitch accuracy.')
|
243 |
-
f0_method.change(show_hop_slider, inputs=f0_method, outputs=crepe_hop_length)
|
244 |
-
keep_files = gr.Checkbox(label='Keep intermediate files', info='Keep all audio files generated in the song_output/id directory, e.g. Isolated Vocals/Instrumentals. Leave unchecked to save space')
|
245 |
-
|
246 |
-
with gr.Accordion('Audio mixing options', open=False):
|
247 |
-
gr.Markdown('### Volume Change (decibels)')
|
248 |
-
with gr.Row():
|
249 |
-
main_gain = gr.Slider(-20, 20, value=0, step=1, label='Main Vocals')
|
250 |
-
backup_gain = gr.Slider(-20, 20, value=0, step=1, label='Backup Vocals')
|
251 |
-
inst_gain = gr.Slider(-20, 20, value=0, step=1, label='Music')
|
252 |
-
|
253 |
-
gr.Markdown('### Reverb Control on AI Vocals')
|
254 |
-
with gr.Row():
|
255 |
-
reverb_rm_size = gr.Slider(0, 1, value=0.15, label='Room size', info='The larger the room, the longer the reverb time')
|
256 |
-
reverb_wet = gr.Slider(0, 1, value=0.2, label='Wetness level', info='Level of AI vocals with reverb')
|
257 |
-
reverb_dry = gr.Slider(0, 1, value=0.8, label='Dryness level', info='Level of AI vocals without reverb')
|
258 |
-
reverb_damping = gr.Slider(0, 1, value=0.7, label='Damping level', info='Absorption of high frequencies in the reverb')
|
259 |
-
|
260 |
-
gr.Markdown('### Audio Output Format')
|
261 |
-
output_format = gr.Dropdown(['mp3', 'wav'], value='mp3', label='Output file type', info='mp3: small file size, decent quality. wav: Large file size, best quality')
|
262 |
-
|
263 |
-
with gr.Row():
|
264 |
-
clear_btn = gr.ClearButton(value='Clear', components=[song_input, model_url, keep_files, local_file])
|
265 |
-
generate_btn = gr.Button("Generate", variant='primary')
|
266 |
-
with gr.Row():
|
267 |
-
ai_cover = gr.Audio(label='AI Cover (Vocal Only Inference)', show_share_button=False)
|
268 |
-
ai_backing = gr.Audio(label='AI Cover (Vocal Backing Inference)', show_share_button=False)
|
269 |
-
|
270 |
-
is_webui = gr.Number(value=1, visible=False)
|
271 |
-
generate_btn.click(song_cover_pipeline_with_model_download,
|
272 |
-
inputs=[song_input, model_url, model_name, pitch, keep_files, is_webui, main_gain, backup_gain,
|
273 |
-
|
274 |
-
inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
|
275 |
-
protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
|
276 |
-
output_format],
|
277 |
-
outputs=[ai_cover, ai_backing])
|
278 |
-
clear_btn.click(lambda: [0, 0, 0, 0, 0.5, 3, 0.25, 0.33, 'rmvpe', 128, 0, 0.15, 0.2, 0.8, 0.7, 'mp3', None],
|
279 |
-
outputs=[pitch, main_gain, backup_gain, inst_gain, index_rate, filter_radius, rms_mix_rate,
|
280 |
-
protect, f0_method, crepe_hop_length, pitch_all, reverb_rm_size, reverb_wet,
|
281 |
-
reverb_dry, reverb_damping, output_format, ai_cover])
|
282 |
-
|
283 |
-
app.launch(
|
284 |
-
share=args.share_enabled,
|
285 |
-
server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
|
286 |
-
server_port=args.listen_port,
|
287 |
-
)
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
os.system("pip install ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/")
|
4 |
+
os.system("python src/webui.py")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -20,4 +20,5 @@ tqdm==4.65.0
|
|
20 |
yt_dlp==2024.8.6
|
21 |
sox==1.4.1
|
22 |
audio-separator[gpu]==0.17.5
|
23 |
-
gdown==5.2.0
|
|
|
|
20 |
yt_dlp==2024.8.6
|
21 |
sox==1.4.1
|
22 |
audio-separator[gpu]==0.17.5
|
23 |
+
gdown==5.2.0
|
24 |
+
ort-nightly-gpu @ https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/ort-nightly-gpu/
|
src/infer_pack/attentions.py
CHANGED
@@ -5,9 +5,9 @@ import torch
|
|
5 |
from torch import nn
|
6 |
from torch.nn import functional as F
|
7 |
|
8 |
-
from
|
9 |
-
from
|
10 |
-
from
|
11 |
|
12 |
|
13 |
class Encoder(nn.Module):
|
|
|
5 |
from torch import nn
|
6 |
from torch.nn import functional as F
|
7 |
|
8 |
+
from infer_pack import commons
|
9 |
+
from infer_pack import modules
|
10 |
+
from infer_pack.modules import LayerNorm
|
11 |
|
12 |
|
13 |
class Encoder(nn.Module):
|
src/infer_pack/models.py
CHANGED
@@ -3,15 +3,15 @@ from time import time as ttime
|
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
from torch.nn import functional as F
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
-
from
|
13 |
import numpy as np
|
14 |
-
from
|
15 |
|
16 |
|
17 |
class TextEncoder256(nn.Module):
|
|
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
from torch.nn import functional as F
|
6 |
+
from infer_pack import modules
|
7 |
+
from infer_pack import attentions
|
8 |
+
from infer_pack import commons
|
9 |
+
from infer_pack.commons import init_weights, get_padding
|
10 |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
11 |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
12 |
+
from infer_pack.commons import init_weights
|
13 |
import numpy as np
|
14 |
+
from infer_pack import commons
|
15 |
|
16 |
|
17 |
class TextEncoder256(nn.Module):
|
src/infer_pack/modules.py
CHANGED
@@ -9,9 +9,9 @@ from torch.nn import functional as F
|
|
9 |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
|
12 |
-
from
|
13 |
-
from
|
14 |
-
from
|
15 |
|
16 |
|
17 |
LRELU_SLOPE = 0.1
|
|
|
9 |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
10 |
from torch.nn.utils import weight_norm, remove_weight_norm
|
11 |
|
12 |
+
from infer_pack import commons
|
13 |
+
from infer_pack.commons import init_weights, get_padding
|
14 |
+
from infer_pack.transforms import piecewise_rational_quadratic_transform
|
15 |
|
16 |
|
17 |
LRELU_SLOPE = 0.1
|
src/main.py
CHANGED
@@ -18,8 +18,8 @@ from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
|
|
18 |
from pedalboard.io import AudioFile
|
19 |
from pydub import AudioSegment
|
20 |
|
21 |
-
from
|
22 |
-
from
|
23 |
|
24 |
import spaces
|
25 |
|
|
|
18 |
from pedalboard.io import AudioFile
|
19 |
from pydub import AudioSegment
|
20 |
|
21 |
+
from mdx import run_mdx, run_roformer
|
22 |
+
from rvc import Config, load_hubert, get_vc, rvc_infer
|
23 |
|
24 |
import spaces
|
25 |
|
src/rvc.py
CHANGED
@@ -4,14 +4,14 @@ from pathlib import Path
|
|
4 |
import torch
|
5 |
from scipy.io import wavfile
|
6 |
|
7 |
-
from
|
8 |
SynthesizerTrnMs256NSFsid,
|
9 |
SynthesizerTrnMs256NSFsid_nono,
|
10 |
SynthesizerTrnMs768NSFsid,
|
11 |
SynthesizerTrnMs768NSFsid_nono,
|
12 |
)
|
13 |
-
from
|
14 |
-
from
|
15 |
|
16 |
BASE_DIR = Path(__file__).resolve().parent.parent
|
17 |
|
|
|
4 |
import torch
|
5 |
from scipy.io import wavfile
|
6 |
|
7 |
+
from infer_pack.models import (
|
8 |
SynthesizerTrnMs256NSFsid,
|
9 |
SynthesizerTrnMs256NSFsid_nono,
|
10 |
SynthesizerTrnMs768NSFsid,
|
11 |
SynthesizerTrnMs768NSFsid_nono,
|
12 |
)
|
13 |
+
from my_utils import load_audio
|
14 |
+
from vc_infer_pipeline import VC
|
15 |
|
16 |
BASE_DIR = Path(__file__).resolve().parent.parent
|
17 |
|
src/webui.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import urllib.request
|
5 |
+
import zipfile
|
6 |
+
import gdown
|
7 |
+
from argparse import ArgumentParser
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import spaces
|
11 |
+
|
12 |
+
from main import song_cover_pipeline
|
13 |
+
|
14 |
+
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
15 |
+
|
16 |
+
mdxnet_models_dir = 'mdxnet_models'
|
17 |
+
rvc_models_dir = 'rvc_models'
|
18 |
+
output_dir = 'song_output'
|
19 |
+
|
20 |
+
def download_and_extract_model(model_url, model_name, progress=gr.Progress()):
|
21 |
+
try:
|
22 |
+
os.makedirs(rvc_models_dir, exist_ok=True)
|
23 |
+
|
24 |
+
extraction_folder = os.path.join(rvc_models_dir, model_name)
|
25 |
+
zip_path = os.path.join(rvc_models_dir, f'{model_name}.zip')
|
26 |
+
|
27 |
+
if os.path.exists(extraction_folder):
|
28 |
+
raise gr.Error(f'Voice model directory {model_name} already exists! Choose a different name for your voice model.')
|
29 |
+
|
30 |
+
progress(0, desc=f'[~] Downloading voice model with name {model_name}...')
|
31 |
+
|
32 |
+
try:
|
33 |
+
if 'huggingface.co' in model_url:
|
34 |
+
urllib.request.urlretrieve(model_url, zip_path)
|
35 |
+
elif 'pixeldrain.com' in model_url:
|
36 |
+
pixeldrain_id = model_url.split('/')[-1]
|
37 |
+
pixeldrain_url = f'https://pixeldrain.com/api/file/{pixeldrain_id}'
|
38 |
+
urllib.request.urlretrieve(pixeldrain_url, zip_path)
|
39 |
+
elif 'drive.google.com' in model_url:
|
40 |
+
file_id = model_url.split('/')[-2]
|
41 |
+
gdown.download(id=file_id, output=zip_path, quiet=False)
|
42 |
+
else:
|
43 |
+
urllib.request.urlretrieve(model_url, zip_path)
|
44 |
+
except Exception as download_error:
|
45 |
+
raise gr.Error(f"Failed to download the model: {str(download_error)}")
|
46 |
+
|
47 |
+
if not os.path.exists(zip_path):
|
48 |
+
raise gr.Error(f"Failed to download the model. The zip file was not created.")
|
49 |
+
|
50 |
+
progress(0.5, desc="Extracting model...")
|
51 |
+
extract_zip(extraction_folder, zip_path)
|
52 |
+
|
53 |
+
pth_files = [f for f in os.listdir(extraction_folder) if f.endswith('.pth')]
|
54 |
+
if not pth_files:
|
55 |
+
raise ValueError("No .pth file found in the downloaded model.")
|
56 |
+
|
57 |
+
progress(1, desc="Model ready")
|
58 |
+
return model_name
|
59 |
+
|
60 |
+
except Exception as e:
|
61 |
+
if os.path.exists(extraction_folder):
|
62 |
+
shutil.rmtree(extraction_folder)
|
63 |
+
if os.path.exists(zip_path):
|
64 |
+
os.remove(zip_path)
|
65 |
+
raise gr.Error(f"Error downloading or extracting model: {str(e)}")
|
66 |
+
|
67 |
+
def cleanup_temp_model(model_name):
|
68 |
+
temp_dir = os.path.join(rvc_models_dir, model_name)
|
69 |
+
try:
|
70 |
+
shutil.rmtree(temp_dir)
|
71 |
+
except Exception as e:
|
72 |
+
print(f"Error cleaning up temporary model files: {str(e)}")
|
73 |
+
|
74 |
+
def extract_zip(extraction_folder, zip_name):
|
75 |
+
os.makedirs(extraction_folder)
|
76 |
+
with zipfile.ZipFile(zip_name, 'r') as zip_ref:
|
77 |
+
zip_ref.extractall(extraction_folder)
|
78 |
+
os.remove(zip_name)
|
79 |
+
|
80 |
+
index_filepath, model_filepath = None, None
|
81 |
+
for root, dirs, files in os.walk(extraction_folder):
|
82 |
+
for name in files:
|
83 |
+
if name.endswith('.index') and os.stat(os.path.join(root, name)).st_size > 1024 * 100:
|
84 |
+
index_filepath = os.path.join(root, name)
|
85 |
+
|
86 |
+
if name.endswith('.pth') and os.stat(os.path.join(root, name)).st_size > 1024 * 1024 * 40:
|
87 |
+
model_filepath = os.path.join(root, name)
|
88 |
+
|
89 |
+
if not model_filepath:
|
90 |
+
raise gr.Error(f'No .pth model file was found in the extracted zip. Please check {extraction_folder}.')
|
91 |
+
|
92 |
+
# move model and index file to extraction folder
|
93 |
+
os.rename(model_filepath, os.path.join(extraction_folder, os.path.basename(model_filepath)))
|
94 |
+
if index_filepath:
|
95 |
+
os.rename(index_filepath, os.path.join(extraction_folder, os.path.basename(index_filepath)))
|
96 |
+
|
97 |
+
# remove any unnecessary nested folders
|
98 |
+
for filepath in os.listdir(extraction_folder):
|
99 |
+
if os.path.isdir(os.path.join(extraction_folder, filepath)):
|
100 |
+
shutil.rmtree(os.path.join(extraction_folder, filepath))
|
101 |
+
|
102 |
+
|
103 |
+
def download_online_model(url, dir_name, progress=gr.Progress()):
|
104 |
+
try:
|
105 |
+
progress(0, desc=f'[~] Downloading voice model with name {dir_name}...')
|
106 |
+
zip_name = url.split('/')[-1]
|
107 |
+
extraction_folder = os.path.join(rvc_models_dir, dir_name)
|
108 |
+
if os.path.exists(extraction_folder):
|
109 |
+
raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
|
110 |
+
|
111 |
+
if 'huggingface.co' in url:
|
112 |
+
urllib.request.urlretrieve(url, zip_name)
|
113 |
+
|
114 |
+
if 'pixeldrain.com' in url:
|
115 |
+
zip_name = dir_name + '.zip'
|
116 |
+
url = f'https://pixeldrain.com/api/file/{zip_name}'
|
117 |
+
urllib.request.urlretrieve(url, zip_name)
|
118 |
+
|
119 |
+
elif 'drive.google.com' in url:
|
120 |
+
# Extract the Google Drive file ID
|
121 |
+
zip_name = dir_name + '.zip'
|
122 |
+
file_id = url.split('/')[-2]
|
123 |
+
output = os.path.join('.', f'{dir_name}.zip') # Adjust the output path if needed
|
124 |
+
gdown.download(id=file_id, output=output, quiet=False)
|
125 |
+
|
126 |
+
progress(0.5, desc='[~] Extracting zip...')
|
127 |
+
extract_zip(extraction_folder, zip_name)
|
128 |
+
return f'[+] {dir_name} Model successfully downloaded!'
|
129 |
+
|
130 |
+
except Exception as e:
|
131 |
+
raise gr.Error(str(e))
|
132 |
+
|
133 |
+
|
134 |
+
def upload_local_model(zip_path, dir_name, progress=gr.Progress()):
|
135 |
+
try:
|
136 |
+
extraction_folder = os.path.join(rvc_models_dir, dir_name)
|
137 |
+
if os.path.exists(extraction_folder):
|
138 |
+
raise gr.Error(f'Voice model directory {dir_name} already exists! Choose a different name for your voice model.')
|
139 |
+
|
140 |
+
zip_name = zip_path.name
|
141 |
+
progress(0.5, desc='[~] Extracting zip...')
|
142 |
+
extract_zip(extraction_folder, zip_name)
|
143 |
+
return f'[+] {dir_name} Model successfully uploaded!'
|
144 |
+
|
145 |
+
except Exception as e:
|
146 |
+
raise gr.Error(str(e))
|
147 |
+
|
148 |
+
def pub_dl_autofill(pub_models, event: gr.SelectData):
|
149 |
+
return gr.Text.update(value=pub_models.loc[event.index[0], 'URL']), gr.Text.update(value=pub_models.loc[event.index[0], 'Model Name'])
|
150 |
+
|
151 |
+
|
152 |
+
def swap_visibility():
|
153 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(value=''), gr.update(value=None)
|
154 |
+
|
155 |
+
|
156 |
+
def process_file_upload(file):
|
157 |
+
return file.name, gr.update(value=file.name)
|
158 |
+
|
159 |
+
|
160 |
+
def show_hop_slider(pitch_detection_algo):
|
161 |
+
if pitch_detection_algo == 'mangio-crepe':
|
162 |
+
return gr.update(visible=True)
|
163 |
+
else:
|
164 |
+
return gr.update(visible=False)
|
165 |
+
|
166 |
+
|
167 |
+
def song_cover_pipeline_with_model_download(song_input, model_url, model_name, pitch, keep_files, is_webui, main_gain, backup_gain,
|
168 |
+
inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
|
169 |
+
protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
|
170 |
+
output_format, progress=gr.Progress()):
|
171 |
+
model_path = None
|
172 |
+
try:
|
173 |
+
model_path = download_and_extract_model(model_url, model_name, progress)
|
174 |
+
print(f"Model path: {model_path}")
|
175 |
+
result = song_cover_pipeline(song_input, model_path, pitch, keep_files, is_webui, main_gain, backup_gain,
|
176 |
+
inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
|
177 |
+
protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
|
178 |
+
output_format, progress)
|
179 |
+
|
180 |
+
# Clean up old folders in song_output
|
181 |
+
output_folders = [f for f in os.listdir(output_dir) if os.path.isdir(os.path.join(output_dir, f))]
|
182 |
+
output_folders.sort(key=lambda x: os.path.getmtime(os.path.join(output_dir, x)))
|
183 |
+
|
184 |
+
while len(output_folders) > 100:
|
185 |
+
oldest_folder = output_folders.pop(0)
|
186 |
+
shutil.rmtree(os.path.join(output_dir, oldest_folder))
|
187 |
+
|
188 |
+
return result
|
189 |
+
except gr.Error as e:
|
190 |
+
return str(e), None # Return error message and None for the second output
|
191 |
+
finally:
|
192 |
+
if model_path:
|
193 |
+
cleanup_temp_model(model_path)
|
194 |
+
|
195 |
+
|
196 |
+
if __name__ == '__main__':
|
197 |
+
parser = ArgumentParser(description='Generate a AI cover song in the song_output/id directory.', add_help=True)
|
198 |
+
parser.add_argument("--share", action="store_true", dest="share_enabled", default=False, help="Enable sharing")
|
199 |
+
parser.add_argument("--listen", action="store_true", default=False, help="Make the WebUI reachable from your local network.")
|
200 |
+
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
|
201 |
+
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
|
202 |
+
args = parser.parse_args()
|
203 |
+
|
204 |
+
with gr.Blocks(title='AICoverGenWebUI', theme='NoCrypt/miku@1.2.2') as app:
|
205 |
+
|
206 |
+
gr.Label('AICoverGen WebUI created with ❤️', show_label=False)
|
207 |
+
|
208 |
+
# main tab
|
209 |
+
with gr.Tab("Generate"):
|
210 |
+
|
211 |
+
with gr.Accordion('Main Options'):
|
212 |
+
with gr.Row():
|
213 |
+
with gr.Column():
|
214 |
+
model_url = gr.Text(label='Voice Model URL', info='Enter the URL of the voice model zip file', value='https://huggingface.co/megaaziib/my-rvc-models-collection/resolve/main/kobo.zip')
|
215 |
+
model_name = gr.Text(label='Voice Model Name', info='Enter the name of the voice model', value='kobo')
|
216 |
+
# rvc_model = gr.Dropdown(voice_models, label='Voice Models', info='Models folder "AICoverGen --> rvc_models". After new models are added into this folder, click the refresh button')
|
217 |
+
|
218 |
+
with gr.Column() as yt_link_col:
|
219 |
+
song_input = gr.Text(label='Song input', info='Link to a song on YouTube or full path to a local file. For file upload, click the button below.', value='https://youtu.be/FRh7LvlQTuA')
|
220 |
+
show_file_upload_button = gr.Button('Upload file instead')
|
221 |
+
|
222 |
+
with gr.Column(visible=False) as file_upload_col:
|
223 |
+
local_file = gr.File(label='Audio file')
|
224 |
+
song_input_file = gr.UploadButton('Upload 📂', file_types=['audio'], variant='primary')
|
225 |
+
show_yt_link_button = gr.Button('Paste YouTube link/Path to local file instead')
|
226 |
+
song_input_file.upload(process_file_upload, inputs=[song_input_file], outputs=[local_file, song_input])
|
227 |
+
|
228 |
+
with gr.Column():
|
229 |
+
pitch = gr.Slider(-24, 24, value=0, step=1, label='Pitch Change (Vocals ONLY)', info='Generally, use 12 for male to female conversions and -12 for vice-versa. (Octaves)')
|
230 |
+
pitch_all = gr.Slider(-12, 12, value=0, step=1, label='Overall Pitch Change', info='Changes pitch/key of vocals and instrumentals together. Altering this slightly reduces sound quality. (Semitones)')
|
231 |
+
show_file_upload_button.click(swap_visibility, outputs=[file_upload_col, yt_link_col, song_input, local_file])
|
232 |
+
show_yt_link_button.click(swap_visibility, outputs=[yt_link_col, file_upload_col, song_input, local_file])
|
233 |
+
|
234 |
+
with gr.Accordion('Voice conversion options', open=False):
|
235 |
+
with gr.Row():
|
236 |
+
index_rate = gr.Slider(0, 1, value=0.5, label='Index Rate', info="Controls how much of the AI voice's accent to keep in the vocals")
|
237 |
+
filter_radius = gr.Slider(0, 7, value=3, step=1, label='Filter radius', info='If >=3: apply median filtering median filtering to the harvested pitch results. Can reduce breathiness')
|
238 |
+
rms_mix_rate = gr.Slider(0, 1, value=0.25, label='RMS mix rate', info="Control how much to mimic the original vocal's loudness (0) or a fixed loudness (1)")
|
239 |
+
protect = gr.Slider(0, 0.5, value=0.33, label='Protect rate', info='Protect voiceless consonants and breath sounds. Set to 0.5 to disable.')
|
240 |
+
with gr.Column():
|
241 |
+
f0_method = gr.Dropdown(['rmvpe', 'mangio-crepe'], value='rmvpe', label='Pitch detection algorithm', info='Best option is rmvpe (clarity in vocals), then mangio-crepe (smoother vocals)')
|
242 |
+
crepe_hop_length = gr.Slider(32, 320, value=128, step=1, visible=False, label='Crepe hop length', info='Lower values leads to longer conversions and higher risk of voice cracks, but better pitch accuracy.')
|
243 |
+
f0_method.change(show_hop_slider, inputs=f0_method, outputs=crepe_hop_length)
|
244 |
+
keep_files = gr.Checkbox(label='Keep intermediate files', info='Keep all audio files generated in the song_output/id directory, e.g. Isolated Vocals/Instrumentals. Leave unchecked to save space')
|
245 |
+
|
246 |
+
with gr.Accordion('Audio mixing options', open=False):
|
247 |
+
gr.Markdown('### Volume Change (decibels)')
|
248 |
+
with gr.Row():
|
249 |
+
main_gain = gr.Slider(-20, 20, value=0, step=1, label='Main Vocals')
|
250 |
+
backup_gain = gr.Slider(-20, 20, value=0, step=1, label='Backup Vocals')
|
251 |
+
inst_gain = gr.Slider(-20, 20, value=0, step=1, label='Music')
|
252 |
+
|
253 |
+
gr.Markdown('### Reverb Control on AI Vocals')
|
254 |
+
with gr.Row():
|
255 |
+
reverb_rm_size = gr.Slider(0, 1, value=0.15, label='Room size', info='The larger the room, the longer the reverb time')
|
256 |
+
reverb_wet = gr.Slider(0, 1, value=0.2, label='Wetness level', info='Level of AI vocals with reverb')
|
257 |
+
reverb_dry = gr.Slider(0, 1, value=0.8, label='Dryness level', info='Level of AI vocals without reverb')
|
258 |
+
reverb_damping = gr.Slider(0, 1, value=0.7, label='Damping level', info='Absorption of high frequencies in the reverb')
|
259 |
+
|
260 |
+
gr.Markdown('### Audio Output Format')
|
261 |
+
output_format = gr.Dropdown(['mp3', 'wav'], value='mp3', label='Output file type', info='mp3: small file size, decent quality. wav: Large file size, best quality')
|
262 |
+
|
263 |
+
with gr.Row():
|
264 |
+
clear_btn = gr.ClearButton(value='Clear', components=[song_input, model_url, keep_files, local_file])
|
265 |
+
generate_btn = gr.Button("Generate", variant='primary')
|
266 |
+
with gr.Row():
|
267 |
+
ai_cover = gr.Audio(label='AI Cover (Vocal Only Inference)', show_share_button=False)
|
268 |
+
ai_backing = gr.Audio(label='AI Cover (Vocal Backing Inference)', show_share_button=False)
|
269 |
+
|
270 |
+
is_webui = gr.Number(value=1, visible=False)
|
271 |
+
generate_btn.click(song_cover_pipeline_with_model_download,
|
272 |
+
inputs=[song_input, model_url, model_name, pitch, keep_files, is_webui, main_gain, backup_gain,
|
273 |
+
|
274 |
+
inst_gain, index_rate, filter_radius, rms_mix_rate, f0_method, crepe_hop_length,
|
275 |
+
protect, pitch_all, reverb_rm_size, reverb_wet, reverb_dry, reverb_damping,
|
276 |
+
output_format],
|
277 |
+
outputs=[ai_cover, ai_backing])
|
278 |
+
clear_btn.click(lambda: [0, 0, 0, 0, 0.5, 3, 0.25, 0.33, 'rmvpe', 128, 0, 0.15, 0.2, 0.8, 0.7, 'mp3', None],
|
279 |
+
outputs=[pitch, main_gain, backup_gain, inst_gain, index_rate, filter_radius, rms_mix_rate,
|
280 |
+
protect, f0_method, crepe_hop_length, pitch_all, reverb_rm_size, reverb_wet,
|
281 |
+
reverb_dry, reverb_damping, output_format, ai_cover])
|
282 |
+
|
283 |
+
app.launch(
|
284 |
+
share=args.share_enabled,
|
285 |
+
server_name=None if not args.listen else (args.listen_host or '0.0.0.0'),
|
286 |
+
server_port=args.listen_port,
|
287 |
+
)
|