Upload Section_8_Text2MCQ_practice.ipynb
Browse files- Section_8_Text2MCQ_practice.ipynb +1251 -0
Section_8_Text2MCQ_practice.ipynb
ADDED
@@ -0,0 +1,1251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"colab": {
|
8 |
+
"background_save": true
|
9 |
+
},
|
10 |
+
"id": "8JqpxyBueqTH",
|
11 |
+
"outputId": "6c2c3908-9067-496c-ad64-74f21895232a"
|
12 |
+
},
|
13 |
+
"outputs": [
|
14 |
+
{
|
15 |
+
"name": "stdout",
|
16 |
+
"output_type": "stream",
|
17 |
+
"text": [
|
18 |
+
" Building wheel for flashtext (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
19 |
+
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
|
20 |
+
"Collecting git+https://github.com/boudinfl/pke.git\n",
|
21 |
+
" Cloning https://github.com/boudinfl/pke.git to /tmp/pip-req-build-s0vst_dk\n",
|
22 |
+
" Running command git clone -q https://github.com/boudinfl/pke.git /tmp/pip-req-build-s0vst_dk\n",
|
23 |
+
"Requirement already satisfied: nltk in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (3.7)\n",
|
24 |
+
"Requirement already satisfied: networkx in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (2.6.3)\n",
|
25 |
+
"Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (1.21.6)\n",
|
26 |
+
"Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (1.7.3)\n",
|
27 |
+
"Collecting sklearn\n",
|
28 |
+
" Downloading sklearn-0.0.post1.tar.gz (3.6 kB)\n",
|
29 |
+
"Collecting unidecode\n",
|
30 |
+
" Downloading Unidecode-1.3.6-py3-none-any.whl (235 kB)\n",
|
31 |
+
"\u001b[K |████████████████████████████████| 235 kB 6.2 MB/s \n",
|
32 |
+
"\u001b[?25hRequirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (0.16.0)\n",
|
33 |
+
"Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (1.2.0)\n",
|
34 |
+
"Requirement already satisfied: spacy>=3.2.3 in /usr/local/lib/python3.7/dist-packages (from pke==2.0.0) (3.4.3)\n",
|
35 |
+
"Requirement already satisfied: cymem<2.1.0,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.0.7)\n",
|
36 |
+
"Requirement already satisfied: typing-extensions<4.2.0,>=3.7.4 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (4.1.1)\n",
|
37 |
+
"Requirement already satisfied: spacy-loggers<2.0.0,>=1.0.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (1.0.3)\n",
|
38 |
+
"Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (57.4.0)\n",
|
39 |
+
"Requirement already satisfied: spacy-legacy<3.1.0,>=3.0.10 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (3.0.10)\n",
|
40 |
+
"Requirement already satisfied: wasabi<1.1.0,>=0.9.1 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (0.10.1)\n",
|
41 |
+
"Requirement already satisfied: typer<0.8.0,>=0.3.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (0.7.0)\n",
|
42 |
+
"Requirement already satisfied: thinc<8.2.0,>=8.1.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (8.1.5)\n",
|
43 |
+
"Requirement already satisfied: srsly<3.0.0,>=2.4.3 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.4.5)\n",
|
44 |
+
"Requirement already satisfied: preshed<3.1.0,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (3.0.8)\n",
|
45 |
+
"Requirement already satisfied: tqdm<5.0.0,>=4.38.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (4.64.1)\n",
|
46 |
+
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (21.3)\n",
|
47 |
+
"Requirement already satisfied: murmurhash<1.1.0,>=0.28.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (1.0.9)\n",
|
48 |
+
"Requirement already satisfied: pathy>=0.3.5 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (0.8.1)\n",
|
49 |
+
"Requirement already satisfied: pydantic!=1.8,!=1.8.1,<1.11.0,>=1.7.4 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (1.10.2)\n",
|
50 |
+
"Requirement already satisfied: requests<3.0.0,>=2.13.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.23.0)\n",
|
51 |
+
"Requirement already satisfied: langcodes<4.0.0,>=3.2.0 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (3.3.0)\n",
|
52 |
+
"Requirement already satisfied: catalogue<2.1.0,>=2.0.6 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.0.8)\n",
|
53 |
+
"Requirement already satisfied: jinja2 in /usr/local/lib/python3.7/dist-packages (from spacy>=3.2.3->pke==2.0.0) (2.11.3)\n",
|
54 |
+
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from catalogue<2.1.0,>=2.0.6->spacy>=3.2.3->pke==2.0.0) (3.10.0)\n",
|
55 |
+
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->spacy>=3.2.3->pke==2.0.0) (3.0.9)\n",
|
56 |
+
"Requirement already satisfied: smart-open<6.0.0,>=5.2.1 in /usr/local/lib/python3.7/dist-packages (from pathy>=0.3.5->spacy>=3.2.3->pke==2.0.0) (5.2.1)\n",
|
57 |
+
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=3.2.3->pke==2.0.0) (2.10)\n",
|
58 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=3.2.3->pke==2.0.0) (2022.9.24)\n",
|
59 |
+
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=3.2.3->pke==2.0.0) (3.0.4)\n",
|
60 |
+
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests<3.0.0,>=2.13.0->spacy>=3.2.3->pke==2.0.0) (1.24.3)\n",
|
61 |
+
"Requirement already satisfied: confection<1.0.0,>=0.0.1 in /usr/local/lib/python3.7/dist-packages (from thinc<8.2.0,>=8.1.0->spacy>=3.2.3->pke==2.0.0) (0.0.3)\n",
|
62 |
+
"Requirement already satisfied: blis<0.8.0,>=0.7.8 in /usr/local/lib/python3.7/dist-packages (from thinc<8.2.0,>=8.1.0->spacy>=3.2.3->pke==2.0.0) (0.7.9)\n",
|
63 |
+
"Requirement already satisfied: click<9.0.0,>=7.1.1 in /usr/local/lib/python3.7/dist-packages (from typer<0.8.0,>=0.3.0->spacy>=3.2.3->pke==2.0.0) (7.1.2)\n",
|
64 |
+
"Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from jinja2->spacy>=3.2.3->pke==2.0.0) (2.0.1)\n",
|
65 |
+
"Requirement already satisfied: regex>=2021.8.3 in /usr/local/lib/python3.7/dist-packages (from nltk->pke==2.0.0) (2022.6.2)\n",
|
66 |
+
"Building wheels for collected packages: pke, sklearn\n",
|
67 |
+
" Building wheel for pke (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
68 |
+
" Created wheel for pke: filename=pke-2.0.0-py3-none-any.whl size=6160276 sha256=6967c9216d570e0bbc7bab2c16f5f1810ecd62dcc9fad636e26ff35edbab3a68\n",
|
69 |
+
" Stored in directory: /tmp/pip-ephem-wheel-cache-_mu5g7sn/wheels/fa/b3/09/612ee93bf3ee4164bcd5783e742942cdfc892a86039d3e0a33\n",
|
70 |
+
" Building wheel for sklearn (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
71 |
+
" Created wheel for sklearn: filename=sklearn-0.0.post1-py3-none-any.whl size=2344 sha256=47f5287c3e5d1518e0617e1db17d093069e553338d6c0e359aa70352e6c78d66\n",
|
72 |
+
" Stored in directory: /root/.cache/pip/wheels/42/56/cc/4a8bf86613aafd5b7f1b310477667c1fca5c51c3ae4124a003\n",
|
73 |
+
"Successfully built pke sklearn\n",
|
74 |
+
"Installing collected packages: unidecode, sklearn, pke\n",
|
75 |
+
"Successfully installed pke-2.0.0 sklearn-0.0.post1 unidecode-1.3.6\n"
|
76 |
+
]
|
77 |
+
}
|
78 |
+
],
|
79 |
+
"source": [
|
80 |
+
"!pip install --quiet flashtext==2.7\n",
|
81 |
+
"!pip install git+https://github.com/boudinfl/pke.git\n"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": null,
|
87 |
+
"metadata": {
|
88 |
+
"id": "am3XUlr5evYK"
|
89 |
+
},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"!pip install --quiet transformers==4.8.1\n",
|
93 |
+
"!pip install --quiet sentencepiece==0.1.95\n",
|
94 |
+
"!pip install --quiet textwrap3==0.9.2\n",
|
95 |
+
"!pip install gradio"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": null,
|
101 |
+
"metadata": {
|
102 |
+
"colab": {
|
103 |
+
"background_save": true
|
104 |
+
},
|
105 |
+
"id": "mhwpLyuBfFUK",
|
106 |
+
"outputId": "dc6f4900-429d-4815-c98c-b8625efcbe7b"
|
107 |
+
},
|
108 |
+
"outputs": [
|
109 |
+
{
|
110 |
+
"name": "stdout",
|
111 |
+
"output_type": "stream",
|
112 |
+
"text": [
|
113 |
+
"\u001b[?25l\r\u001b[K |███████▊ | 10 kB 27.7 MB/s eta 0:00:01\r\u001b[K |███████████████▌ | 20 kB 34.6 MB/s eta 0:00:01\r\u001b[K |███████████████████████▏ | 30 kB 15.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████ | 40 kB 6.6 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 42 kB 955 kB/s \n",
|
114 |
+
"\u001b[?25h"
|
115 |
+
]
|
116 |
+
}
|
117 |
+
],
|
118 |
+
"source": [
|
119 |
+
"!pip install --quiet strsim==0.0.3\n",
|
120 |
+
"!pip install --quiet sense2vec==2.0.0"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "code",
|
125 |
+
"execution_count": null,
|
126 |
+
"metadata": {
|
127 |
+
"colab": {
|
128 |
+
"background_save": true
|
129 |
+
},
|
130 |
+
"id": "NcNXz17EfQLJ",
|
131 |
+
"outputId": "c90851f7-e320-48e3-d994-fcc5c174c636"
|
132 |
+
},
|
133 |
+
"outputs": [
|
134 |
+
{
|
135 |
+
"name": "stdout",
|
136 |
+
"output_type": "stream",
|
137 |
+
"text": [
|
138 |
+
"\u001b[?25l\r\u001b[K |▏ | 10 kB 10.5 MB/s eta 0:00:01\r\u001b[K |▍ | 20 kB 7.8 MB/s eta 0:00:01\r\u001b[K |▋ | 30 kB 11.1 MB/s eta 0:00:01\r\u001b[K |▉ | 40 kB 6.3 MB/s eta 0:00:01\r\u001b[K |█ | 51 kB 6.3 MB/s eta 0:00:01\r\u001b[K |█▎ | 61 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█▌ | 71 kB 7.9 MB/s eta 0:00:01\r\u001b[K |█▊ | 81 kB 8.7 MB/s eta 0:00:01\r\u001b[K |█▉ | 92 kB 8.7 MB/s eta 0:00:01\r\u001b[K |██ | 102 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██▎ | 112 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██▌ | 122 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██▊ | 133 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███ | 143 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███▏ | 153 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███▍ | 163 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███▌ | 174 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███▊ | 184 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████ | 194 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████▏ | 204 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████▍ | 215 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████▋ | 225 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████▉ | 235 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████ | 245 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████▎ | 256 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████▍ | 266 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████▋ | 276 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████▉ | 286 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████ | 296 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████▎ | 307 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████▌ | 317 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████▊ | 327 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████ | 337 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████ | 348 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████▎ | 358 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████▌ | 368 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████▊ | 378 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████ | 389 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████▏ | 399 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████▍ | 409 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████▋ | 419 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████▊ | 430 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████ | 440 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████▏ | 450 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████▍ | 460 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████▋ | 471 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████▉ | 481 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████ | 491 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████▎ | 501 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████▌ | 512 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████▋ | 522 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████▉ | 532 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████ | 542 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████▎ | 552 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████▌ | 563 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████▊ | 573 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████���█████ | 583 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████▏ | 593 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████▎ | 604 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████▌ | 614 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████▊ | 624 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████ | 634 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████▏ | 645 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████▍ | 655 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████▋ | 665 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████▉ | 675 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████ | 686 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████▏ | 696 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████▍ | 706 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████▋ | 716 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████▉ | 727 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████ | 737 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████▎ | 747 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████▌ | 757 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████▊ | 768 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████▉ | 778 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████ | 788 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████▎ | 798 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████▌ | 808 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████▊ | 819 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████ | 829 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████▏ | 839 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████▍ | 849 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████▌ | 860 kB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████▊ | 870 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████ | 880 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████▏ | 890 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████▍ | 901 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████▋ | 911 kB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████▉ | 921 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████ | 931 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████▎ | 942 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████▍ | 952 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████▋ | 962 kB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████▉ | 972 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████ | 983 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████▎ | 993 kB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████▌ | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████▊ | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████ | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████ | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████▎ | 1.0 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████▌ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████▊ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████▏ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████▍ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████▋ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████▊ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████▏ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████▍ | 1.1 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████▋ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████▉ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████▎ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████▌ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████▋ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████▉ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████████ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████████▎ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████████▌ | 1.2 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████████▊ | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████████ | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▏ | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▎ | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▌ | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▊ | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████ | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▏ | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▍ | 1.3 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▋ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▉ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████████ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▏ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▍ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▋ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▉ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▎ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▌ | 1.4 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▊ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▉ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▎ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▌ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▊ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████ | 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▏| 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▍| 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▌| 1.5 MB 7.5 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▊| 1.6 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 1.6 MB 7.5 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 1.6 MB 7.5 MB/s \n",
|
139 |
+
"\u001b[?25htime: 506 µs (started: 2022-11-24 06:06:09 +00:00)\n"
|
140 |
+
]
|
141 |
+
}
|
142 |
+
],
|
143 |
+
"source": [
|
144 |
+
"!pip install --quiet ipython-autotime\n",
|
145 |
+
"%load_ext autotime"
|
146 |
+
]
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"cell_type": "code",
|
150 |
+
"execution_count": null,
|
151 |
+
"metadata": {
|
152 |
+
"colab": {
|
153 |
+
"background_save": true
|
154 |
+
},
|
155 |
+
"id": "Bijc_hfbfUwp",
|
156 |
+
"outputId": "54a7f895-8f08-452d-8f3a-8e5310a1aa6c"
|
157 |
+
},
|
158 |
+
"outputs": [
|
159 |
+
{
|
160 |
+
"name": "stdout",
|
161 |
+
"output_type": "stream",
|
162 |
+
"text": [
|
163 |
+
"\u001b[K |████████████████████████████████| 85 kB 3.9 MB/s \n",
|
164 |
+
"\u001b[K |████████████████████████████████| 182 kB 49.1 MB/s \n",
|
165 |
+
"\u001b[K |████████████████████████████████| 5.5 MB 54.9 MB/s \n",
|
166 |
+
"\u001b[K |████████████████████████████████| 7.6 MB 55.0 MB/s \n",
|
167 |
+
"\u001b[?25h Building wheel for sentence-transformers (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
168 |
+
"time: 10.4 s (started: 2022-11-24 06:06:09 +00:00)\n"
|
169 |
+
]
|
170 |
+
}
|
171 |
+
],
|
172 |
+
"source": [
|
173 |
+
"!pip install --quiet sentence-transformers==2.2.2"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "markdown",
|
178 |
+
"metadata": {
|
179 |
+
"id": "bmVx9L0yfgvR"
|
180 |
+
},
|
181 |
+
"source": [
|
182 |
+
"The below code restarts the colab notebook. Once it is restarted continue from next section and no need to run this section (installation) again."
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": null,
|
188 |
+
"metadata": {
|
189 |
+
"colab": {
|
190 |
+
"background_save": true
|
191 |
+
},
|
192 |
+
"id": "uPO9U__1fZWh",
|
193 |
+
"outputId": "31e8d745-2a88-4bd6-f136-55cd2147ee3f"
|
194 |
+
},
|
195 |
+
"outputs": [
|
196 |
+
{
|
197 |
+
"name": "stdout",
|
198 |
+
"output_type": "stream",
|
199 |
+
"text": [
|
200 |
+
"time: 556 µs (started: 2022-11-24 06:06:20 +00:00)\n"
|
201 |
+
]
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"source": [
|
205 |
+
"# import os\n",
|
206 |
+
"# os.kill(os.getpid(), 9)"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"cell_type": "markdown",
|
211 |
+
"metadata": {
|
212 |
+
"id": "POh2_zvgrk0h"
|
213 |
+
},
|
214 |
+
"source": [
|
215 |
+
"## Example 1"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"cell_type": "markdown",
|
220 |
+
"metadata": {
|
221 |
+
"id": "VJP4CDBBrnNY"
|
222 |
+
},
|
223 |
+
"source": [
|
224 |
+
"Text taken from: \n",
|
225 |
+
"https://gadgets.ndtv.com/internet/news/dogecoin-price-rally-surge-elon-musk-tweet-twitter-working-developers-improve-transaction-efficiency-2442120"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"cell_type": "code",
|
230 |
+
"execution_count": null,
|
231 |
+
"metadata": {
|
232 |
+
"colab": {
|
233 |
+
"background_save": true
|
234 |
+
},
|
235 |
+
"id": "P_jlw7MUfjOp",
|
236 |
+
"outputId": "fd3e08da-3595-445d-941f-2c8047e34f08"
|
237 |
+
},
|
238 |
+
"outputs": [
|
239 |
+
{
|
240 |
+
"name": "stdout",
|
241 |
+
"output_type": "stream",
|
242 |
+
"text": [
|
243 |
+
"Elon Musk has shown again he can influence the digital currency market with just his tweets. After saying that his electric vehicle-making company\n",
|
244 |
+
"Tesla will not accept payments in Bitcoin because of environmental concerns, he tweeted that he was working with developers of Dogecoin to improve\n",
|
245 |
+
"system transaction efficiency. Following the two distinct statements from him, the world's largest cryptocurrency hit a two-month low, while Dogecoin\n",
|
246 |
+
"rallied by about 20 percent. The SpaceX CEO has in recent months often tweeted in support of Dogecoin, but rarely for Bitcoin. In a recent tweet,\n",
|
247 |
+
"Musk put out a statement from Tesla that it was “concerned” about the rapidly increasing use of fossil fuels for Bitcoin (price in India) mining and\n",
|
248 |
+
"transaction, and hence was suspending vehicle purchases using the cryptocurrency. A day later he again tweeted saying, “To be clear, I strongly\n",
|
249 |
+
"believe in crypto, but it can't drive a massive increase in fossil fuel use, especially coal”. It triggered a downward spiral for Bitcoin value but\n",
|
250 |
+
"the cryptocurrency has stabilised since. A number of Twitter users welcomed Musk's statement. One of them said it's time people started realising\n",
|
251 |
+
"that Dogecoin “is here to stay” and another referred to Musk's previous assertion that crypto could become the world's future currency.\n",
|
252 |
+
"\n",
|
253 |
+
"\n",
|
254 |
+
"time: 18.8 ms (started: 2022-11-24 06:06:20 +00:00)\n"
|
255 |
+
]
|
256 |
+
}
|
257 |
+
],
|
258 |
+
"source": [
|
259 |
+
"from textwrap3 import wrap\n",
|
260 |
+
"\n",
|
261 |
+
"text = \"\"\"Elon Musk has shown again he can influence the digital currency market with just his tweets. After saying that his electric vehicle-making company\n",
|
262 |
+
"Tesla will not accept payments in Bitcoin because of environmental concerns, he tweeted that he was working with developers of Dogecoin to improve\n",
|
263 |
+
"system transaction efficiency. Following the two distinct statements from him, the world's largest cryptocurrency hit a two-month low, while Dogecoin\n",
|
264 |
+
"rallied by about 20 percent. The SpaceX CEO has in recent months often tweeted in support of Dogecoin, but rarely for Bitcoin. In a recent tweet,\n",
|
265 |
+
"Musk put out a statement from Tesla that it was “concerned” about the rapidly increasing use of fossil fuels for Bitcoin (price in India) mining and\n",
|
266 |
+
"transaction, and hence was suspending vehicle purchases using the cryptocurrency. A day later he again tweeted saying, “To be clear, I strongly\n",
|
267 |
+
"believe in crypto, but it can't drive a massive increase in fossil fuel use, especially coal”. It triggered a downward spiral for Bitcoin value but\n",
|
268 |
+
"the cryptocurrency has stabilised since. A number of Twitter users welcomed Musk's statement. One of them said it's time people started realising\n",
|
269 |
+
"that Dogecoin “is here to stay” and another referred to Musk's previous assertion that crypto could become the world's future currency.\"\"\"\n",
|
270 |
+
"\n",
|
271 |
+
"for wrp in wrap(text, 150):\n",
|
272 |
+
" print (wrp)\n",
|
273 |
+
"print (\"\\n\")"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "markdown",
|
278 |
+
"metadata": {
|
279 |
+
"id": "ShPNEZz8u7s6"
|
280 |
+
},
|
281 |
+
"source": [
|
282 |
+
"# **Summarization with T5**"
|
283 |
+
]
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"cell_type": "code",
|
287 |
+
"execution_count": null,
|
288 |
+
"metadata": {
|
289 |
+
"colab": {
|
290 |
+
"background_save": true,
|
291 |
+
"referenced_widgets": [
|
292 |
+
"c9c2e5d5824345f780befcf11d6ff946",
|
293 |
+
"c39b4e7e424d4f64a8fb25495f8c7026",
|
294 |
+
"543714c7a41a4429a57a069bc2eca1dc"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
"id": "H1eIU521rrn5",
|
298 |
+
"outputId": "d3bb1402-1cba-4881-b05f-b8e24bb19278"
|
299 |
+
},
|
300 |
+
"outputs": [
|
301 |
+
{
|
302 |
+
"data": {
|
303 |
+
"application/vnd.jupyter.widget-view+json": {
|
304 |
+
"model_id": "c9c2e5d5824345f780befcf11d6ff946",
|
305 |
+
"version_major": 2,
|
306 |
+
"version_minor": 0
|
307 |
+
},
|
308 |
+
"text/plain": [
|
309 |
+
"Downloading: 0%| | 0.00/1.20k [00:00<?, ?B/s]"
|
310 |
+
]
|
311 |
+
},
|
312 |
+
"metadata": {},
|
313 |
+
"output_type": "display_data"
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"data": {
|
317 |
+
"application/vnd.jupyter.widget-view+json": {
|
318 |
+
"model_id": "c39b4e7e424d4f64a8fb25495f8c7026",
|
319 |
+
"version_major": 2,
|
320 |
+
"version_minor": 0
|
321 |
+
},
|
322 |
+
"text/plain": [
|
323 |
+
"Downloading: 0%| | 0.00/892M [00:00<?, ?B/s]"
|
324 |
+
]
|
325 |
+
},
|
326 |
+
"metadata": {},
|
327 |
+
"output_type": "display_data"
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"data": {
|
331 |
+
"application/vnd.jupyter.widget-view+json": {
|
332 |
+
"model_id": "543714c7a41a4429a57a069bc2eca1dc",
|
333 |
+
"version_major": 2,
|
334 |
+
"version_minor": 0
|
335 |
+
},
|
336 |
+
"text/plain": [
|
337 |
+
"Downloading: 0%| | 0.00/792k [00:00<?, ?B/s]"
|
338 |
+
]
|
339 |
+
},
|
340 |
+
"metadata": {},
|
341 |
+
"output_type": "display_data"
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"name": "stderr",
|
345 |
+
"output_type": "stream",
|
346 |
+
"text": [
|
347 |
+
"/usr/local/lib/python3.7/dist-packages/transformers/models/t5/tokenization_t5.py:174: FutureWarning: This tokenizer was incorrectly instantiated with a model max length of 512 which will be corrected in Transformers v5.\n",
|
348 |
+
"For now, this behavior is kept to avoid breaking backwards compatibility when padding/encoding with `truncation is True`.\n",
|
349 |
+
"- Be aware that you SHOULD NOT rely on t5-base automatically truncating your input to 512 when padding/encoding.\n",
|
350 |
+
"- If you want to encode/pad to sequences longer than 512 you can either instantiate this tokenizer with `model_max_length` or pass `max_length` when encoding/padding.\n",
|
351 |
+
"- To avoid this warning, please instantiate this tokenizer with `model_max_length` set to your preferred value.\n",
|
352 |
+
" FutureWarning,\n"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"name": "stdout",
|
357 |
+
"output_type": "stream",
|
358 |
+
"text": [
|
359 |
+
"time: 30.6 s (started: 2022-11-24 06:06:20 +00:00)\n"
|
360 |
+
]
|
361 |
+
}
|
362 |
+
],
|
363 |
+
"source": [
|
364 |
+
"import torch\n",
|
365 |
+
"from transformers import T5ForConditionalGeneration,T5Tokenizer\n",
|
366 |
+
"summary_model = T5ForConditionalGeneration.from_pretrained('t5-base')\n",
|
367 |
+
"summary_tokenizer = T5Tokenizer.from_pretrained('t5-base')\n",
|
368 |
+
"\n",
|
369 |
+
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
370 |
+
"summary_model = summary_model.to(device)\n"
|
371 |
+
]
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"cell_type": "code",
|
375 |
+
"execution_count": null,
|
376 |
+
"metadata": {
|
377 |
+
"colab": {
|
378 |
+
"background_save": true
|
379 |
+
},
|
380 |
+
"id": "8mVsjMPTu-bj",
|
381 |
+
"outputId": "e0ac198d-4625-4f8f-a2fd-9968c0a5a72d"
|
382 |
+
},
|
383 |
+
"outputs": [
|
384 |
+
{
|
385 |
+
"name": "stdout",
|
386 |
+
"output_type": "stream",
|
387 |
+
"text": [
|
388 |
+
"time: 1.03 ms (started: 2022-11-24 06:06:50 +00:00)\n"
|
389 |
+
]
|
390 |
+
}
|
391 |
+
],
|
392 |
+
"source": [
|
393 |
+
"import random\n",
|
394 |
+
"import numpy as np\n",
|
395 |
+
"\n",
|
396 |
+
"def set_seed(seed: int):\n",
|
397 |
+
" random.seed(seed)\n",
|
398 |
+
" np.random.seed(seed)\n",
|
399 |
+
" torch.manual_seed(seed)\n",
|
400 |
+
" torch.cuda.manual_seed_all(seed)\n",
|
401 |
+
"\n",
|
402 |
+
"set_seed(42)"
|
403 |
+
]
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"cell_type": "code",
|
407 |
+
"execution_count": null,
|
408 |
+
"metadata": {
|
409 |
+
"colab": {
|
410 |
+
"background_save": true
|
411 |
+
},
|
412 |
+
"id": "Gh2Xc5JRvQDp",
|
413 |
+
"outputId": "c1198166-2a2b-4571-b831-3ed1a8705c9e"
|
414 |
+
},
|
415 |
+
"outputs": [
|
416 |
+
{
|
417 |
+
"name": "stderr",
|
418 |
+
"output_type": "stream",
|
419 |
+
"text": [
|
420 |
+
"[nltk_data] Downloading package punkt to /root/nltk_data...\n",
|
421 |
+
"[nltk_data] Unzipping tokenizers/punkt.zip.\n",
|
422 |
+
"[nltk_data] Downloading package brown to /root/nltk_data...\n",
|
423 |
+
"[nltk_data] Unzipping corpora/brown.zip.\n",
|
424 |
+
"[nltk_data] Downloading package wordnet to /root/nltk_data...\n"
|
425 |
+
]
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"name": "stdout",
|
429 |
+
"output_type": "stream",
|
430 |
+
"text": [
|
431 |
+
"\n",
|
432 |
+
"original Text >>\n",
|
433 |
+
"Elon Musk has shown again he can influence the digital currency market with just his tweets. After saying that his electric vehicle-making company\n",
|
434 |
+
"Tesla will not accept payments in Bitcoin because of environmental concerns, he tweeted that he was working with developers of Dogecoin to improve\n",
|
435 |
+
"system transaction efficiency. Following the two distinct statements from him, the world's largest cryptocurrency hit a two-month low, while Dogecoin\n",
|
436 |
+
"rallied by about 20 percent. The SpaceX CEO has in recent months often tweeted in support of Dogecoin, but rarely for Bitcoin. In a recent tweet,\n",
|
437 |
+
"Musk put out a statement from Tesla that it was “concerned” about the rapidly increasing use of fossil fuels for Bitcoin (price in India) mining and\n",
|
438 |
+
"transaction, and hence was suspending vehicle purchases using the cryptocurrency. A day later he again tweeted saying, “To be clear, I strongly\n",
|
439 |
+
"believe in crypto, but it can't drive a massive increase in fossil fuel use, especially coal”. It triggered a downward spiral for Bitcoin value but\n",
|
440 |
+
"the cryptocurrency has stabilised since. A number of Twitter users welcomed Musk's statement. One of them said it's time people started realising\n",
|
441 |
+
"that Dogecoin “is here to stay” and another referred to Musk's previous assertion that crypto could become the world's future currency.\n",
|
442 |
+
"\n",
|
443 |
+
"\n",
|
444 |
+
"Summarized Text >>\n",
|
445 |
+
"Musk tweeted that his electric vehicle-making company tesla will not accept payments in bitcoin because of environmental concerns. He also said that\n",
|
446 |
+
"the company was working with developers of dogecoin to improve system transaction efficiency. The world's largest cryptocurrency hit a two-month low,\n",
|
447 |
+
"while doge coin rallied by about 20 percent. Musk has in recent months often tweeted in support of crypto, but rarely for bitcoin.\n",
|
448 |
+
"\n",
|
449 |
+
"\n",
|
450 |
+
"time: 6.14 s (started: 2022-11-24 06:06:50 +00:00)\n"
|
451 |
+
]
|
452 |
+
}
|
453 |
+
],
|
454 |
+
"source": [
|
455 |
+
"import nltk\n",
|
456 |
+
"nltk.download('punkt')\n",
|
457 |
+
"nltk.download('brown')\n",
|
458 |
+
"nltk.download('wordnet')\n",
|
459 |
+
"from nltk.corpus import wordnet as wn\n",
|
460 |
+
"from nltk.tokenize import sent_tokenize\n",
|
461 |
+
"\n",
|
462 |
+
"def postprocesstext (content):\n",
|
463 |
+
" final=\"\"\n",
|
464 |
+
" for sent in sent_tokenize(content):\n",
|
465 |
+
" sent = sent.capitalize()\n",
|
466 |
+
" final = final +\" \"+sent\n",
|
467 |
+
" return final\n",
|
468 |
+
"\n",
|
469 |
+
"\n",
|
470 |
+
"def summarizer(text,model,tokenizer):\n",
|
471 |
+
" text = text.strip().replace(\"\\n\",\" \")\n",
|
472 |
+
" text = \"summarize: \"+text\n",
|
473 |
+
" # print (text)\n",
|
474 |
+
" max_len = 512\n",
|
475 |
+
" encoding = tokenizer.encode_plus(text,max_length=max_len, pad_to_max_length=False,truncation=True, return_tensors=\"pt\").to(device)\n",
|
476 |
+
"\n",
|
477 |
+
" input_ids, attention_mask = encoding[\"input_ids\"], encoding[\"attention_mask\"]\n",
|
478 |
+
"\n",
|
479 |
+
" outs = model.generate(input_ids=input_ids,\n",
|
480 |
+
" attention_mask=attention_mask,\n",
|
481 |
+
" early_stopping=True,\n",
|
482 |
+
" num_beams=3,\n",
|
483 |
+
" num_return_sequences=1,\n",
|
484 |
+
" no_repeat_ngram_size=2,\n",
|
485 |
+
" min_length = 75,\n",
|
486 |
+
" max_length=300)\n",
|
487 |
+
"\n",
|
488 |
+
"\n",
|
489 |
+
" dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]\n",
|
490 |
+
" summary = dec[0]\n",
|
491 |
+
" summary = postprocesstext(summary)\n",
|
492 |
+
" summary= summary.strip()\n",
|
493 |
+
"\n",
|
494 |
+
" return summary\n",
|
495 |
+
"\n",
|
496 |
+
"\n",
|
497 |
+
"summarized_text = summarizer(text,summary_model,summary_tokenizer)\n",
|
498 |
+
"\n",
|
499 |
+
"\n",
|
500 |
+
"print (\"\\noriginal Text >>\")\n",
|
501 |
+
"for wrp in wrap(text, 150):\n",
|
502 |
+
" print (wrp)\n",
|
503 |
+
"print (\"\\n\")\n",
|
504 |
+
"print (\"Summarized Text >>\")\n",
|
505 |
+
"for wrp in wrap(summarized_text, 150):\n",
|
506 |
+
" print (wrp)\n",
|
507 |
+
"print (\"\\n\")"
|
508 |
+
]
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"cell_type": "markdown",
|
512 |
+
"metadata": {
|
513 |
+
"id": "JvBHu5eXv_wp"
|
514 |
+
},
|
515 |
+
"source": [
|
516 |
+
"# **Answer Span Extraction (Keywords and Noun Phrases)**"
|
517 |
+
]
|
518 |
+
},
|
519 |
+
{
|
520 |
+
"cell_type": "code",
|
521 |
+
"execution_count": null,
|
522 |
+
"metadata": {
|
523 |
+
"colab": {
|
524 |
+
"background_save": true
|
525 |
+
},
|
526 |
+
"id": "84DxJGFn4MfD",
|
527 |
+
"outputId": "27c39b58-dcaa-4b92-ff9e-0da292be34d9"
|
528 |
+
},
|
529 |
+
"outputs": [
|
530 |
+
{
|
531 |
+
"name": "stderr",
|
532 |
+
"output_type": "stream",
|
533 |
+
"text": [
|
534 |
+
"[nltk_data] Downloading package stopwords to /root/nltk_data...\n",
|
535 |
+
"[nltk_data] Unzipping corpora/stopwords.zip.\n"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"name": "stdout",
|
540 |
+
"output_type": "stream",
|
541 |
+
"text": [
|
542 |
+
"time: 8.23 s (started: 2022-11-24 06:06:56 +00:00)\n"
|
543 |
+
]
|
544 |
+
}
|
545 |
+
],
|
546 |
+
"source": [
|
547 |
+
"import nltk\n",
|
548 |
+
"nltk.download('stopwords')\n",
|
549 |
+
"from nltk.corpus import stopwords\n",
|
550 |
+
"import string\n",
|
551 |
+
"import pke\n",
|
552 |
+
"import traceback\n",
|
553 |
+
"\n",
|
554 |
+
"def get_nouns_multipartite(content):\n",
|
555 |
+
" out=[]\n",
|
556 |
+
" try:\n",
|
557 |
+
" extractor = pke.unsupervised.MultipartiteRank()\n",
|
558 |
+
" extractor.load_document(input=content,language='en')\n",
|
559 |
+
" # not contain punctuation marks or stopwords as candidates.\n",
|
560 |
+
" pos = {'PROPN','NOUN'}\n",
|
561 |
+
" #pos = {'PROPN','NOUN'}\n",
|
562 |
+
" stoplist = list(string.punctuation)\n",
|
563 |
+
" stoplist += ['-lrb-', '-rrb-', '-lcb-', '-rcb-', '-lsb-', '-rsb-']\n",
|
564 |
+
" stoplist += stopwords.words('english')\n",
|
565 |
+
" # extractor.candidate_selection(pos=pos, stoplist=stoplist)\n",
|
566 |
+
" extractor.candidate_selection(pos=pos)\n",
|
567 |
+
" # 4. build the Multipartite graph and rank candidates using random walk,\n",
|
568 |
+
" # alpha controls the weight adjustment mechanism, see TopicRank for\n",
|
569 |
+
" # threshold/method parameters.\n",
|
570 |
+
" extractor.candidate_weighting(alpha=1.1,\n",
|
571 |
+
" threshold=0.75,\n",
|
572 |
+
" method='average')\n",
|
573 |
+
" keyphrases = extractor.get_n_best(n=15)\n",
|
574 |
+
" \n",
|
575 |
+
"\n",
|
576 |
+
" for val in keyphrases:\n",
|
577 |
+
" out.append(val[0])\n",
|
578 |
+
" except:\n",
|
579 |
+
" out = []\n",
|
580 |
+
" traceback.print_exc()\n",
|
581 |
+
"\n",
|
582 |
+
" return out"
|
583 |
+
]
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"cell_type": "code",
|
587 |
+
"execution_count": null,
|
588 |
+
"metadata": {
|
589 |
+
"colab": {
|
590 |
+
"background_save": true
|
591 |
+
},
|
592 |
+
"id": "E8LNRzDVwDbp",
|
593 |
+
"outputId": "c2ae2bda-8250-4e82-ed71-d10568251e68"
|
594 |
+
},
|
595 |
+
"outputs": [
|
596 |
+
{
|
597 |
+
"name": "stdout",
|
598 |
+
"output_type": "stream",
|
599 |
+
"text": [
|
600 |
+
"keywords unsummarized: ['elon musk', 'dogecoin', 'bitcoin', 'statements', 'use', 'cryptocurrency', 'tesla', 'tweets', 'musk', 'system transaction efficiency', 'currency market', 'world', 'price', 'payments', 'company']\n",
|
601 |
+
"keywords_found in summarized: ['world', 'dogecoin', 'musk', 'cryptocurrency', 'system transaction efficiency', 'payments', 'company', 'bitcoin', 'tesla']\n",
|
602 |
+
"['dogecoin', 'bitcoin', 'cryptocurrency', 'tesla', 'musk', 'system transaction efficiency', 'world', 'payments', 'company']\n",
|
603 |
+
"time: 785 ms (started: 2022-11-24 06:07:05 +00:00)\n"
|
604 |
+
]
|
605 |
+
}
|
606 |
+
],
|
607 |
+
"source": [
|
608 |
+
"from flashtext import KeywordProcessor\n",
|
609 |
+
"\n",
|
610 |
+
"\n",
|
611 |
+
"def get_keywords(originaltext,summarytext):\n",
|
612 |
+
" keywords = get_nouns_multipartite(originaltext)\n",
|
613 |
+
" print (\"keywords unsummarized: \",keywords)\n",
|
614 |
+
" keyword_processor = KeywordProcessor()\n",
|
615 |
+
" for keyword in keywords:\n",
|
616 |
+
" keyword_processor.add_keyword(keyword)\n",
|
617 |
+
"\n",
|
618 |
+
" keywords_found = keyword_processor.extract_keywords(summarytext)\n",
|
619 |
+
" keywords_found = list(set(keywords_found))\n",
|
620 |
+
" print (\"keywords_found in summarized: \",keywords_found)\n",
|
621 |
+
"\n",
|
622 |
+
" important_keywords =[]\n",
|
623 |
+
" for keyword in keywords:\n",
|
624 |
+
" if keyword in keywords_found:\n",
|
625 |
+
" important_keywords.append(keyword)\n",
|
626 |
+
"\n",
|
627 |
+
" return important_keywords[:10]\n",
|
628 |
+
"\n",
|
629 |
+
"\n",
|
630 |
+
"imp_keywords = get_keywords(text,summarized_text)\n",
|
631 |
+
"print (imp_keywords)\n"
|
632 |
+
]
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"cell_type": "code",
|
636 |
+
"execution_count": null,
|
637 |
+
"metadata": {
|
638 |
+
"colab": {
|
639 |
+
"background_save": true,
|
640 |
+
"referenced_widgets": [
|
641 |
+
"24334ddee9f74d3c82a575f0edbc8720",
|
642 |
+
"c884156893794fa6bad4171a9aacbd2f",
|
643 |
+
"2f0d8bf7b60a423383ae6ab2469106eb",
|
644 |
+
"70c932999b0f4dcda0525b9a81ceabf3",
|
645 |
+
"7897cc69283d475694042ed9cbc6e92c"
|
646 |
+
]
|
647 |
+
},
|
648 |
+
"id": "m44RM44OwGzR",
|
649 |
+
"outputId": "ca45cae8-a813-4425-9adc-3d8e0f886324"
|
650 |
+
},
|
651 |
+
"outputs": [
|
652 |
+
{
|
653 |
+
"data": {
|
654 |
+
"application/vnd.jupyter.widget-view+json": {
|
655 |
+
"model_id": "24334ddee9f74d3c82a575f0edbc8720",
|
656 |
+
"version_major": 2,
|
657 |
+
"version_minor": 0
|
658 |
+
},
|
659 |
+
"text/plain": [
|
660 |
+
"Downloading: 0%| | 0.00/1.21k [00:00<?, ?B/s]"
|
661 |
+
]
|
662 |
+
},
|
663 |
+
"metadata": {},
|
664 |
+
"output_type": "display_data"
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"data": {
|
668 |
+
"application/vnd.jupyter.widget-view+json": {
|
669 |
+
"model_id": "c884156893794fa6bad4171a9aacbd2f",
|
670 |
+
"version_major": 2,
|
671 |
+
"version_minor": 0
|
672 |
+
},
|
673 |
+
"text/plain": [
|
674 |
+
"Downloading: 0%| | 0.00/892M [00:00<?, ?B/s]"
|
675 |
+
]
|
676 |
+
},
|
677 |
+
"metadata": {},
|
678 |
+
"output_type": "display_data"
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"data": {
|
682 |
+
"application/vnd.jupyter.widget-view+json": {
|
683 |
+
"model_id": "2f0d8bf7b60a423383ae6ab2469106eb",
|
684 |
+
"version_major": 2,
|
685 |
+
"version_minor": 0
|
686 |
+
},
|
687 |
+
"text/plain": [
|
688 |
+
"Downloading: 0%| | 0.00/792k [00:00<?, ?B/s]"
|
689 |
+
]
|
690 |
+
},
|
691 |
+
"metadata": {},
|
692 |
+
"output_type": "display_data"
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"data": {
|
696 |
+
"application/vnd.jupyter.widget-view+json": {
|
697 |
+
"model_id": "70c932999b0f4dcda0525b9a81ceabf3",
|
698 |
+
"version_major": 2,
|
699 |
+
"version_minor": 0
|
700 |
+
},
|
701 |
+
"text/plain": [
|
702 |
+
"Downloading: 0%| | 0.00/1.79k [00:00<?, ?B/s]"
|
703 |
+
]
|
704 |
+
},
|
705 |
+
"metadata": {},
|
706 |
+
"output_type": "display_data"
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"data": {
|
710 |
+
"application/vnd.jupyter.widget-view+json": {
|
711 |
+
"model_id": "7897cc69283d475694042ed9cbc6e92c",
|
712 |
+
"version_major": 2,
|
713 |
+
"version_minor": 0
|
714 |
+
},
|
715 |
+
"text/plain": [
|
716 |
+
"Downloading: 0%| | 0.00/1.86k [00:00<?, ?B/s]"
|
717 |
+
]
|
718 |
+
},
|
719 |
+
"metadata": {},
|
720 |
+
"output_type": "display_data"
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"name": "stdout",
|
724 |
+
"output_type": "stream",
|
725 |
+
"text": [
|
726 |
+
"time: 35.2 s (started: 2022-11-24 06:07:05 +00:00)\n"
|
727 |
+
]
|
728 |
+
}
|
729 |
+
],
|
730 |
+
"source": [
|
731 |
+
"question_model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_squad_v1')\n",
|
732 |
+
"question_tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_squad_v1')\n",
|
733 |
+
"question_model = question_model.to(device)"
|
734 |
+
]
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"cell_type": "code",
|
738 |
+
"execution_count": null,
|
739 |
+
"metadata": {
|
740 |
+
"colab": {
|
741 |
+
"background_save": true
|
742 |
+
},
|
743 |
+
"id": "1usLabLu5DUB",
|
744 |
+
"outputId": "69d364b6-ee46-46d2-ee22-19b1fe5b2411"
|
745 |
+
},
|
746 |
+
"outputs": [
|
747 |
+
{
|
748 |
+
"name": "stdout",
|
749 |
+
"output_type": "stream",
|
750 |
+
"text": [
|
751 |
+
"Musk tweeted that his electric vehicle-making company tesla will not accept payments in bitcoin because of environmental concerns. He also said that\n",
|
752 |
+
"the company was working with developers of dogecoin to improve system transaction efficiency. The world's largest cryptocurrency hit a two-month low,\n",
|
753 |
+
"while doge coin rallied by about 20 percent. Musk has in recent months often tweeted in support of crypto, but rarely for bitcoin.\n",
|
754 |
+
"\n",
|
755 |
+
"\n",
|
756 |
+
"What did Musk say he was working with to improve system transaction efficiency?\n",
|
757 |
+
"Dogecoin\n",
|
758 |
+
"\n",
|
759 |
+
"\n",
|
760 |
+
"What cryptocurrency did Musk rarely tweet about?\n",
|
761 |
+
"Bitcoin\n",
|
762 |
+
"\n",
|
763 |
+
"\n",
|
764 |
+
"What has Musk often tweeted in support of?\n",
|
765 |
+
"Cryptocurrency\n",
|
766 |
+
"\n",
|
767 |
+
"\n",
|
768 |
+
"What company did Musk say would not accept bitcoin payments?\n",
|
769 |
+
"Tesla\n",
|
770 |
+
"\n",
|
771 |
+
"\n",
|
772 |
+
"Who said tesla would not accept bitcoin payments?\n",
|
773 |
+
"Musk\n",
|
774 |
+
"\n",
|
775 |
+
"\n",
|
776 |
+
"What did Musk want to improve with dogecoin?\n",
|
777 |
+
"System transaction efficiency\n",
|
778 |
+
"\n",
|
779 |
+
"\n",
|
780 |
+
"What is the largest cryptocurrency?\n",
|
781 |
+
"World\n",
|
782 |
+
"\n",
|
783 |
+
"\n",
|
784 |
+
"What did Musk say his company would not accept in bitcoin?\n",
|
785 |
+
"Payments\n",
|
786 |
+
"\n",
|
787 |
+
"\n",
|
788 |
+
"What did Musk say was working with dogecoin developers?\n",
|
789 |
+
"Company\n",
|
790 |
+
"\n",
|
791 |
+
"\n",
|
792 |
+
"time: 2.78 s (started: 2022-11-24 06:07:41 +00:00)\n"
|
793 |
+
]
|
794 |
+
}
|
795 |
+
],
|
796 |
+
"source": [
|
797 |
+
"def get_question(context,answer,model,tokenizer):\n",
|
798 |
+
" text = \"context: {} answer: {}\".format(context,answer)\n",
|
799 |
+
" encoding = tokenizer.encode_plus(text,max_length=384, pad_to_max_length=False,truncation=True, return_tensors=\"pt\").to(device)\n",
|
800 |
+
" input_ids, attention_mask = encoding[\"input_ids\"], encoding[\"attention_mask\"]\n",
|
801 |
+
"\n",
|
802 |
+
" outs = model.generate(input_ids=input_ids,\n",
|
803 |
+
" attention_mask=attention_mask,\n",
|
804 |
+
" early_stopping=True,\n",
|
805 |
+
" num_beams=5,\n",
|
806 |
+
" num_return_sequences=1,\n",
|
807 |
+
" no_repeat_ngram_size=2,\n",
|
808 |
+
" max_length=72)\n",
|
809 |
+
"\n",
|
810 |
+
"\n",
|
811 |
+
" dec = [tokenizer.decode(ids,skip_special_tokens=True) for ids in outs]\n",
|
812 |
+
"\n",
|
813 |
+
"\n",
|
814 |
+
" Question = dec[0].replace(\"question:\",\"\")\n",
|
815 |
+
" Question= Question.strip()\n",
|
816 |
+
" return Question\n",
|
817 |
+
"\n",
|
818 |
+
"\n",
|
819 |
+
"\n",
|
820 |
+
"for wrp in wrap(summarized_text, 150):\n",
|
821 |
+
" print (wrp)\n",
|
822 |
+
"print (\"\\n\")\n",
|
823 |
+
"\n",
|
824 |
+
"for answer in imp_keywords:\n",
|
825 |
+
" ques = get_question(summarized_text,answer,question_model,question_tokenizer)\n",
|
826 |
+
" print (ques)\n",
|
827 |
+
" print (answer.capitalize())\n",
|
828 |
+
" print (\"\\n\")\n"
|
829 |
+
]
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"cell_type": "code",
|
833 |
+
"execution_count": null,
|
834 |
+
"metadata": {
|
835 |
+
"id": "4kEuH__G6oDK",
|
836 |
+
"colab": {
|
837 |
+
"base_uri": "https://localhost:8080/",
|
838 |
+
"height": 740
|
839 |
+
},
|
840 |
+
"outputId": "8a8b7911-1e79-403e-9601-6f7221fc8bd7"
|
841 |
+
},
|
842 |
+
"outputs": [
|
843 |
+
{
|
844 |
+
"metadata": {
|
845 |
+
"tags": null
|
846 |
+
},
|
847 |
+
"name": "stderr",
|
848 |
+
"output_type": "stream",
|
849 |
+
"text": [
|
850 |
+
"/usr/local/lib/python3.7/dist-packages/gradio/inputs.py:27: UserWarning: Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\n",
|
851 |
+
" \"Usage of gradio.inputs is deprecated, and will not be supported in the future, please import your component from gradio.components\",\n",
|
852 |
+
"/usr/local/lib/python3.7/dist-packages/gradio/deprecation.py:40: UserWarning: `optional` parameter is deprecated, and it has no effect\n",
|
853 |
+
" warnings.warn(value)\n",
|
854 |
+
"/usr/local/lib/python3.7/dist-packages/gradio/deprecation.py:40: UserWarning: `numeric` parameter is deprecated, and it has no effect\n",
|
855 |
+
" warnings.warn(value)\n"
|
856 |
+
]
|
857 |
+
},
|
858 |
+
{
|
859 |
+
"metadata": {
|
860 |
+
"tags": null
|
861 |
+
},
|
862 |
+
"name": "stdout",
|
863 |
+
"output_type": "stream",
|
864 |
+
"text": [
|
865 |
+
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
|
866 |
+
"Note: opening Chrome Inspector may crash demo inside Colab notebooks.\n",
|
867 |
+
"\n",
|
868 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
869 |
+
]
|
870 |
+
},
|
871 |
+
{
|
872 |
+
"data": {
|
873 |
+
"application/javascript": [
|
874 |
+
"(async (port, path, width, height, cache, element) => {\n",
|
875 |
+
" if (!google.colab.kernel.accessAllowed && !cache) {\n",
|
876 |
+
" return;\n",
|
877 |
+
" }\n",
|
878 |
+
" element.appendChild(document.createTextNode(''));\n",
|
879 |
+
" const url = await google.colab.kernel.proxyPort(port, {cache});\n",
|
880 |
+
"\n",
|
881 |
+
" const external_link = document.createElement('div');\n",
|
882 |
+
" external_link.innerHTML = `\n",
|
883 |
+
" <div style=\"font-family: monospace; margin-bottom: 0.5rem\">\n",
|
884 |
+
" Running on <a href=${new URL(path, url).toString()} target=\"_blank\">\n",
|
885 |
+
" https://localhost:${port}${path}\n",
|
886 |
+
" </a>\n",
|
887 |
+
" </div>\n",
|
888 |
+
" `;\n",
|
889 |
+
" element.appendChild(external_link);\n",
|
890 |
+
"\n",
|
891 |
+
" const iframe = document.createElement('iframe');\n",
|
892 |
+
" iframe.src = new URL(path, url).toString();\n",
|
893 |
+
" iframe.height = height;\n",
|
894 |
+
" iframe.allow = \"autoplay; camera; microphone; clipboard-read; clipboard-write;\"\n",
|
895 |
+
" iframe.width = width;\n",
|
896 |
+
" iframe.style.border = 0;\n",
|
897 |
+
" element.appendChild(iframe);\n",
|
898 |
+
" })(7860, \"/\", \"100%\", 500, false, window.element)"
|
899 |
+
],
|
900 |
+
"text/plain": [
|
901 |
+
"<IPython.core.display.Javascript object>"
|
902 |
+
]
|
903 |
+
},
|
904 |
+
"metadata": {},
|
905 |
+
"output_type": "display_data"
|
906 |
+
}
|
907 |
+
],
|
908 |
+
"source": [
|
909 |
+
"import gradio as gr\n",
|
910 |
+
"\n",
|
911 |
+
"context = gr.inputs.Textbox(lines=10, placeholder=\"Enter paragraph/content here...\")\n",
|
912 |
+
"output = gr.outputs.HTML( label=\"Question and Answers\")\n",
|
913 |
+
"\n",
|
914 |
+
"\n",
|
915 |
+
"def generate_question(context):\n",
|
916 |
+
" summary_text = summarizer(context,summary_model,summary_tokenizer)\n",
|
917 |
+
" for wrp in wrap(summary_text, 150):\n",
|
918 |
+
" print (wrp)\n",
|
919 |
+
" np = get_keywords(context,summary_text)\n",
|
920 |
+
" print (\"\\n\\nNoun phrases\",np)\n",
|
921 |
+
" output=\"\"\n",
|
922 |
+
" for answer in np:\n",
|
923 |
+
" ques = get_question(summary_text,answer,question_model,question_tokenizer)\n",
|
924 |
+
" # output= output + ques + \"\\n\" + \"Ans: \"+answer.capitalize() + \"\\n\\n\"\n",
|
925 |
+
" output = output + \"<b style='color:blue;'>\" + ques + \"</b>\"\n",
|
926 |
+
" output = output + \"<br>\"\n",
|
927 |
+
" output = output + \"<b style='color:green;'>\" + \"Ans: \" +answer.capitalize()+ \"</b>\"\n",
|
928 |
+
" output = output + \"<br>\"\n",
|
929 |
+
"\n",
|
930 |
+
" summary =\"Summary: \"+ summary_text\n",
|
931 |
+
" for answer in np:\n",
|
932 |
+
" summary = summary.replace(answer,\"<b>\"+answer+\"</b>\")\n",
|
933 |
+
" summary = summary.replace(answer.capitalize(),\"<b>\"+answer.capitalize()+\"</b>\")\n",
|
934 |
+
" output = output + \"<p>\"+summary+\"</p>\"\n",
|
935 |
+
" \n",
|
936 |
+
" return output\n",
|
937 |
+
"\n",
|
938 |
+
"iface = gr.Interface(\n",
|
939 |
+
" fn=generate_question, \n",
|
940 |
+
" inputs=context, \n",
|
941 |
+
" outputs=output)\n",
|
942 |
+
"iface.launch(debug=True)"
|
943 |
+
]
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"cell_type": "markdown",
|
947 |
+
"metadata": {
|
948 |
+
"id": "dNmJx7QNfLcy"
|
949 |
+
},
|
950 |
+
"source": [
|
951 |
+
"# **Filter keywords with Maximum marginal Relevance**"
|
952 |
+
]
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"cell_type": "code",
|
956 |
+
"execution_count": null,
|
957 |
+
"metadata": {
|
958 |
+
"id": "zPBj-IUL7L8x"
|
959 |
+
},
|
960 |
+
"outputs": [],
|
961 |
+
"source": [
|
962 |
+
"!wget https://github.com/explosion/sense2vec/releases/download/v1.0.0/s2v_reddit_2015_md.tar.gz\n",
|
963 |
+
"!tar -xvf s2v_reddit_2015_md.tar.gz"
|
964 |
+
]
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"cell_type": "code",
|
968 |
+
"execution_count": null,
|
969 |
+
"metadata": {
|
970 |
+
"id": "s5RI3fk9fOOz"
|
971 |
+
},
|
972 |
+
"outputs": [],
|
973 |
+
"source": [
|
974 |
+
"import numpy as np\n",
|
975 |
+
"from sense2vec import Sense2Vec\n",
|
976 |
+
"s2v = Sense2Vec().from_disk('s2v_old')"
|
977 |
+
]
|
978 |
+
},
|
979 |
+
{
|
980 |
+
"cell_type": "code",
|
981 |
+
"execution_count": null,
|
982 |
+
"metadata": {
|
983 |
+
"id": "J2y3unpvfo1y"
|
984 |
+
},
|
985 |
+
"outputs": [],
|
986 |
+
"source": [
|
987 |
+
"from sentence_transformers import SentenceTransformer\n",
|
988 |
+
"# paraphrase-distilroberta-base-v1\n",
|
989 |
+
"sentence_transformer_model = SentenceTransformer('msmarco-distilbert-base-v3')"
|
990 |
+
]
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"cell_type": "code",
|
994 |
+
"execution_count": null,
|
995 |
+
"metadata": {
|
996 |
+
"id": "pvfmhuWVfsJb"
|
997 |
+
},
|
998 |
+
"outputs": [],
|
999 |
+
"source": [
|
1000 |
+
"from similarity.normalized_levenshtein import NormalizedLevenshtein\n",
|
1001 |
+
"normalized_levenshtein = NormalizedLevenshtein()\n",
|
1002 |
+
"\n",
|
1003 |
+
"def filter_same_sense_words(original,wordlist):\n",
|
1004 |
+
" filtered_words=[]\n",
|
1005 |
+
" base_sense =original.split('|')[1] \n",
|
1006 |
+
" print (base_sense)\n",
|
1007 |
+
" for eachword in wordlist:\n",
|
1008 |
+
" if eachword[0].split('|')[1] == base_sense:\n",
|
1009 |
+
" filtered_words.append(eachword[0].split('|')[0].replace(\"_\", \" \").title().strip())\n",
|
1010 |
+
" return filtered_words\n",
|
1011 |
+
"\n",
|
1012 |
+
"def get_highest_similarity_score(wordlist,wrd):\n",
|
1013 |
+
" score=[]\n",
|
1014 |
+
" for each in wordlist:\n",
|
1015 |
+
" score.append(normalized_levenshtein.similarity(each.lower(),wrd.lower()))\n",
|
1016 |
+
" return max(score)\n",
|
1017 |
+
"\n",
|
1018 |
+
"def sense2vec_get_words(word,s2v,topn,question):\n",
|
1019 |
+
" output = []\n",
|
1020 |
+
" print (\"word \",word)\n",
|
1021 |
+
" try:\n",
|
1022 |
+
" sense = s2v.get_best_sense(word, senses= [\"NOUN\", \"PERSON\",\"PRODUCT\",\"LOC\",\"ORG\",\"EVENT\",\"NORP\",\"WORK OF ART\",\"FAC\",\"GPE\",\"NUM\",\"FACILITY\"])\n",
|
1023 |
+
" most_similar = s2v.most_similar(sense, n=topn)\n",
|
1024 |
+
" # print (most_similar)\n",
|
1025 |
+
" output = filter_same_sense_words(sense,most_similar)\n",
|
1026 |
+
" print (\"Similar \",output)\n",
|
1027 |
+
" except:\n",
|
1028 |
+
" output =[]\n",
|
1029 |
+
"\n",
|
1030 |
+
" threshold = 0.6\n",
|
1031 |
+
" final=[word]\n",
|
1032 |
+
" checklist =question.split()\n",
|
1033 |
+
" for x in output:\n",
|
1034 |
+
" if get_highest_similarity_score(final,x)<threshold and x not in final and x not in checklist:\n",
|
1035 |
+
" final.append(x)\n",
|
1036 |
+
" \n",
|
1037 |
+
" return final[1:]\n",
|
1038 |
+
"\n",
|
1039 |
+
"def mmr(doc_embedding, word_embeddings, words, top_n, lambda_param):\n",
|
1040 |
+
"\n",
|
1041 |
+
" # Extract similarity within words, and between words and the document\n",
|
1042 |
+
" word_doc_similarity = cosine_similarity(word_embeddings, doc_embedding)\n",
|
1043 |
+
" word_similarity = cosine_similarity(word_embeddings)\n",
|
1044 |
+
"\n",
|
1045 |
+
" # Initialize candidates and already choose best keyword/keyphrase\n",
|
1046 |
+
" keywords_idx = [np.argmax(word_doc_similarity)]\n",
|
1047 |
+
" candidates_idx = [i for i in range(len(words)) if i != keywords_idx[0]]\n",
|
1048 |
+
"\n",
|
1049 |
+
" for _ in range(top_n - 1):\n",
|
1050 |
+
" # Extract similarities within candidates and\n",
|
1051 |
+
" # between candidates and selected keywords/phrases\n",
|
1052 |
+
" candidate_similarities = word_doc_similarity[candidates_idx, :]\n",
|
1053 |
+
" target_similarities = np.max(word_similarity[candidates_idx][:, keywords_idx], axis=1)\n",
|
1054 |
+
"\n",
|
1055 |
+
" # Calculate MMR\n",
|
1056 |
+
" mmr = (lambda_param) * candidate_similarities - (1-lambda_param) * target_similarities.reshape(-1, 1)\n",
|
1057 |
+
" mmr_idx = candidates_idx[np.argmax(mmr)]\n",
|
1058 |
+
"\n",
|
1059 |
+
" # Update keywords & candidates\n",
|
1060 |
+
" keywords_idx.append(mmr_idx)\n",
|
1061 |
+
" candidates_idx.remove(mmr_idx)\n",
|
1062 |
+
"\n",
|
1063 |
+
" return [words[idx] for idx in keywords_idx]"
|
1064 |
+
]
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"cell_type": "code",
|
1068 |
+
"execution_count": null,
|
1069 |
+
"metadata": {
|
1070 |
+
"id": "UCN0-kXEfxwy"
|
1071 |
+
},
|
1072 |
+
"outputs": [],
|
1073 |
+
"source": [
|
1074 |
+
"from collections import OrderedDict\n",
|
1075 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
1076 |
+
"import nltk\n",
|
1077 |
+
"nltk.download('omw-1.4')\n",
|
1078 |
+
"\n",
|
1079 |
+
"def get_distractors_wordnet(word):\n",
|
1080 |
+
" distractors=[]\n",
|
1081 |
+
" try:\n",
|
1082 |
+
" syn = wn.synsets(word,'n')[0]\n",
|
1083 |
+
" \n",
|
1084 |
+
" word= word.lower()\n",
|
1085 |
+
" orig_word = word\n",
|
1086 |
+
" if len(word.split())>0:\n",
|
1087 |
+
" word = word.replace(\" \",\"_\")\n",
|
1088 |
+
" hypernym = syn.hypernyms()\n",
|
1089 |
+
" if len(hypernym) == 0: \n",
|
1090 |
+
" return distractors\n",
|
1091 |
+
" for item in hypernym[0].hyponyms():\n",
|
1092 |
+
" name = item.lemmas()[0].name()\n",
|
1093 |
+
" #print (\"name \",name, \" word\",orig_word)\n",
|
1094 |
+
" if name == orig_word:\n",
|
1095 |
+
" continue\n",
|
1096 |
+
" name = name.replace(\"_\",\" \")\n",
|
1097 |
+
" name = \" \".join(w.capitalize() for w in name.split())\n",
|
1098 |
+
" if name is not None and name not in distractors:\n",
|
1099 |
+
" distractors.append(name)\n",
|
1100 |
+
" except:\n",
|
1101 |
+
" print (\"Wordnet distractors not found\")\n",
|
1102 |
+
" return distractors\n",
|
1103 |
+
"\n",
|
1104 |
+
"def get_distractors (word,origsentence,sense2vecmodel,sentencemodel,top_n,lambdaval):\n",
|
1105 |
+
" distractors = sense2vec_get_words(word,sense2vecmodel,top_n,origsentence)\n",
|
1106 |
+
" print (\"distractors \",distractors)\n",
|
1107 |
+
" if len(distractors) ==0:\n",
|
1108 |
+
" return distractors\n",
|
1109 |
+
" distractors_new = [word.capitalize()]\n",
|
1110 |
+
" distractors_new.extend(distractors)\n",
|
1111 |
+
" # print (\"distractors_new .. \",distractors_new)\n",
|
1112 |
+
"\n",
|
1113 |
+
" embedding_sentence = origsentence+ \" \"+word.capitalize()\n",
|
1114 |
+
" # embedding_sentence = word\n",
|
1115 |
+
" keyword_embedding = sentencemodel.encode([embedding_sentence])\n",
|
1116 |
+
" distractor_embeddings = sentencemodel.encode(distractors_new)\n",
|
1117 |
+
"\n",
|
1118 |
+
" # filtered_keywords = mmr(keyword_embedding, distractor_embeddings,distractors,4,0.7)\n",
|
1119 |
+
" max_keywords = min(len(distractors_new),5)\n",
|
1120 |
+
" filtered_keywords = mmr(keyword_embedding, distractor_embeddings,distractors_new,max_keywords,lambdaval)\n",
|
1121 |
+
" # filtered_keywords = filtered_keywords[1:]\n",
|
1122 |
+
" final = [word.capitalize()]\n",
|
1123 |
+
" for wrd in filtered_keywords:\n",
|
1124 |
+
" if wrd.lower() !=word.lower():\n",
|
1125 |
+
" final.append(wrd.capitalize())\n",
|
1126 |
+
" final = final[1:]\n",
|
1127 |
+
" return final\n",
|
1128 |
+
"\n",
|
1129 |
+
"sent = \"What cryptocurrency did Musk rarely tweet about?\"\n",
|
1130 |
+
"keyword = \"Bitcoin\"\n",
|
1131 |
+
"\n",
|
1132 |
+
"# sent = \"What did Musk say he was working with to improve system transaction efficiency?\"\n",
|
1133 |
+
"# keyword= \"Dogecoin\"\n",
|
1134 |
+
"\n",
|
1135 |
+
"\n",
|
1136 |
+
"# sent = \"What company did Musk say would not accept bitcoin payments?\"\n",
|
1137 |
+
"# keyword= \"Tesla\"\n",
|
1138 |
+
"\n",
|
1139 |
+
"\n",
|
1140 |
+
"# sent = \"What has Musk often tweeted in support of?\"\n",
|
1141 |
+
"# keyword = \"Cryptocurrency\"\n",
|
1142 |
+
"\n",
|
1143 |
+
"print (get_distractors(keyword,sent,s2v,sentence_transformer_model,40,0.2))\n"
|
1144 |
+
]
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"cell_type": "code",
|
1148 |
+
"execution_count": null,
|
1149 |
+
"metadata": {
|
1150 |
+
"id": "s2FX-mGdf08p"
|
1151 |
+
},
|
1152 |
+
"outputs": [],
|
1153 |
+
"source": [
|
1154 |
+
"get_distractors_wordnet('lion')"
|
1155 |
+
]
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"cell_type": "code",
|
1159 |
+
"execution_count": null,
|
1160 |
+
"metadata": {
|
1161 |
+
"id": "vgvffLecf4Cq"
|
1162 |
+
},
|
1163 |
+
"outputs": [],
|
1164 |
+
"source": [
|
1165 |
+
"import gradio as gr\n",
|
1166 |
+
"\n",
|
1167 |
+
"context = gr.inputs.Textbox(lines=10, placeholder=\"Enter paragraph/content here...\")\n",
|
1168 |
+
"output = gr.outputs.HTML( label=\"Question and Answers\")\n",
|
1169 |
+
"radiobutton = gr.inputs.Radio([\"Wordnet\", \"Sense2Vec\"])\n",
|
1170 |
+
"\n",
|
1171 |
+
"def generate_question(context,radiobutton):\n",
|
1172 |
+
" summary_text = summarizer(context,summary_model,summary_tokenizer)\n",
|
1173 |
+
" for wrp in wrap(summary_text, 100):\n",
|
1174 |
+
" print (wrp)\n",
|
1175 |
+
" # np = getnounphrases(summary_text,sentence_transformer_model,3)\n",
|
1176 |
+
" np = get_keywords(context,summary_text)\n",
|
1177 |
+
" print (\"\\n\\nNoun phrases\",np)\n",
|
1178 |
+
" output=\"\"\n",
|
1179 |
+
" for answer in np:\n",
|
1180 |
+
" ques = get_question(summary_text,answer,question_model,question_tokenizer)\n",
|
1181 |
+
" if radiobutton==\"Wordnet\":\n",
|
1182 |
+
" distractors = get_distractors_wordnet(answer)\n",
|
1183 |
+
" else:\n",
|
1184 |
+
" distractors = get_distractors(answer.capitalize(),ques,s2v,sentence_transformer_model,40,0.2)\n",
|
1185 |
+
" # output= output + ques + \"\\n\" + \"Ans: \"+answer.capitalize() + \"\\n\\n\"\n",
|
1186 |
+
" output = output + \"<b style='color:blue;'>\" + ques + \"</b>\"\n",
|
1187 |
+
" output = output + \"<br>\"\n",
|
1188 |
+
" output = output + \"<b style='color:green;'>\" + \"Ans: \" +answer.capitalize()+ \"</b>\"+\"<br>\"\n",
|
1189 |
+
" if len(distractors)>0:\n",
|
1190 |
+
" for distractor in distractors[:4]:\n",
|
1191 |
+
" output = output + \"<b style='color:brown;'>\" + distractor+ \"</b>\"+\"<br>\"\n",
|
1192 |
+
" output = output + \"<br>\"\n",
|
1193 |
+
"\n",
|
1194 |
+
" summary =\"Summary: \"+ summary_text\n",
|
1195 |
+
" for answer in np:\n",
|
1196 |
+
" summary = summary.replace(answer,\"<b>\"+answer+\"</b>\" + \"<br>\")\n",
|
1197 |
+
" summary = summary.replace(answer.capitalize(),\"<b>\"+answer.capitalize()+\"</b>\")\n",
|
1198 |
+
" output = output + \"<p>\"+summary+\"</p>\"\n",
|
1199 |
+
" output = output + \"<br>\"\n",
|
1200 |
+
" return output\n",
|
1201 |
+
"\n",
|
1202 |
+
"\n",
|
1203 |
+
"iface = gr.Interface(\n",
|
1204 |
+
" fn=generate_question, \n",
|
1205 |
+
" inputs=[context,radiobutton], \n",
|
1206 |
+
" outputs=output)\n",
|
1207 |
+
"iface.launch(debug=True)"
|
1208 |
+
]
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"cell_type": "code",
|
1212 |
+
"execution_count": null,
|
1213 |
+
"metadata": {
|
1214 |
+
"id": "EhKGhA1ff7Hi"
|
1215 |
+
},
|
1216 |
+
"outputs": [],
|
1217 |
+
"source": [
|
1218 |
+
"import requests\n",
|
1219 |
+
"\n",
|
1220 |
+
"url = \"https://question-answer.p.rapidapi.com/question-answer\"\n",
|
1221 |
+
"\n",
|
1222 |
+
"querystring = {\"question\":\"What are some tips to starting up your own small business?\"}\n",
|
1223 |
+
"\n",
|
1224 |
+
"headers = {\n",
|
1225 |
+
"\t\"X-RapidAPI-Key\": \"SIGN-UP-FOR-KEY\",\n",
|
1226 |
+
"\t\"X-RapidAPI-Host\": \"question-answer.p.rapidapi.com\"\n",
|
1227 |
+
"}\n",
|
1228 |
+
"\n",
|
1229 |
+
"response = requests.request(\"GET\", url, headers=headers, params=querystring)\n",
|
1230 |
+
"\n",
|
1231 |
+
"print(response.text)"
|
1232 |
+
]
|
1233 |
+
}
|
1234 |
+
],
|
1235 |
+
"metadata": {
|
1236 |
+
"accelerator": "GPU",
|
1237 |
+
"colab": {
|
1238 |
+
"provenance": []
|
1239 |
+
},
|
1240 |
+
"gpuClass": "standard",
|
1241 |
+
"kernelspec": {
|
1242 |
+
"display_name": "Python 3",
|
1243 |
+
"name": "python3"
|
1244 |
+
},
|
1245 |
+
"language_info": {
|
1246 |
+
"name": "python"
|
1247 |
+
}
|
1248 |
+
},
|
1249 |
+
"nbformat": 4,
|
1250 |
+
"nbformat_minor": 0
|
1251 |
+
}
|